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Preface

These notes are largely based on Math 6880: Fluid Dynamics course, taught by Aaron
Fogelson and Christel Hohenegger in Fall 2017 and Spring 2018, at the University of Utah.
Additional examples or remarks or results from other sources are added as I see fit, mainly
to facilitate my understanding. These notes are by no means accurate or applicable, and any
mistakes here are of course my own. Please report any typographical errors or mathematical
fallacy to me by email tan@math.utah.edu.

To-do list:
2.4 Figure of tetrahedron with stress tensor components.
2.7.3 Figure of deformed cube.
3.2.2 Interpret the solution.

1. CHT:... (water waves), which are easily seen by everyone and which are usually used as an example
of waves in elementary courses... are the worst possible example... they have all the complications
that waves can have. — Richard Feynman, The Feynman Lectures on Physics.


mailto:tan@math.utah.edu




Chapter 1

Tensor Algebra and Calculus

The physical quantities encountered in fluid mechanics can be divided into three categories:

1. scalars (zero-order tensors) such as shear rate, energy, volume and time;
2. vectors (first-order tensors) such as velocity, momentum and force;

3. second-order tensors such as stress and rate of strain tensors.

In this chapter we briefly review vector calculus and then extend these to tensor calculus on
tensor fields. Various important concepts include gradient, divergence, curl, Laplacian and the
divergence theorem. We refer the interested reader to [GS08| for an excellent introduction.

1.1 Cartesian Tensors

A Cartesian tensor uses an orthonormal basis to represent a vector in a Euclidean space in the
form of components. Specifically, let {e1, e, e3} denote the standard basis vectors in R3. Any
vector v € R? has a unique decomposition

vV = vie; + vyey + V3es (1.1.1)

and the scalars vy, v9, v3 are called the components (coordinates) of v in the standard basis.

1.1.1 Summation convention

Because we always use Cartesian tensors and operations on these tensors in terms of components
naturally involves sums, we adopt a convention, called the Einstein notation:

Whenever an index appears twice in a term,
a sum is implied over that index.

In other words, we are summing over repeated indices, and the number of repetition depends
on the dimension of the tensor. For example, (1.1.1) in Einstein notation is simply
vV = ;€.

The summation convention applies only pairs of repeated indices within any expressions. In
particular, terms of the form a;, a;b;c; and so on are meaningless. There are two possible types
of indices:
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1. one that appears twice, called a dummy index;
2. one that appears once, called a free index.

For example, in the equation
3
a;=b; + Z Cijs
j=1

the index 7 is the free index while j is the dummy index. Note that each term in an equation
must be consistent in terms of the free index, i.e. each term should have the same free indices.

1.1.2 Kronecker delta and permutation symbols

1 ifi=j,
0ij = e
0 if ¢ # 5.

For i,7,k € {1,2,3}, it is easy to verify that

The Kronecker delta is defined as

0ii = 3, 0i50i5 = 3, 0ij0jk = k.
We can express the dot product in terms of d;;:
u-v= (ule,) . (vjej) = uivj(sij = U;V;.

Also, if x is a vector with coordinates x1, x2, 3, then the partial derivative sof x with respect
to these coordinates can be defined as
8xi

The permutation symbol (or more generally the Levi-Civita symbol) €,y is defined as

1 if ijk = 123, 231 or 312,
Eijk = § —1 if 15k = 321, 213 or 132,
0 otherwise (repeated index).

It is evident that €;;,€;5, = 6. We can express the vector cross product in terms of &y
u x v =(ue;) X (vje;) = uvj(e; X e;) = uvje;jre. (1.1.2)
The determinant of a 3 x 3 matrix A are also related to the permutation symbol:
det(A) = gjjraniazjas, = |a; - (a2 x as)|,

where a; is the ith column of the matrix A.

A permutation is the act of rearranging members of a given set into some other order. A
tranposition is a permutation in which two adjacent indices are interchanged. An even (odd)
permutation is a permutation that can be achieved in an even (odd) number of tranpositions.
With these definitions, observe the following:
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1. 9;; is invariant under transposition of indices, whereas ¢;;; change sign under (pairwise)
transposition, e.g. €ijx = —€&jik;

2. €;jx is invariant under circular or cyclic permutation of indices, in the sense that e;;, =
Ejki = Ekij-

The Kronecker delta and the permutation symbol satisfy the following simple identity, which
can be used to prove many vector identities with ease!

Proposition 1.1.1 (Epsilon-Delta Identity). Let d;; be the Kronecker delta and €, the per-
mutation symbol. Then

€ijkEpgk = 5ip5j — 5]- 5iq and EmjkEnjk = 25mn

As an application of the Epsilon-Delta identity, we prove the following identity involving

the triple vector product
ax(bxec)=(a-c)b—(a-b)e.

Using (1.1.2), we have
a x (bxc)=(anen) X (bicjeijrer)
= ambicjgijkgmknen
= _ambicjgijkgmnken
- _ambicj 5'Lm5]n - 5'Ln5jm:| €,

= —aibicnen —+ ajcjbnen

=(a-c)b—(a-b)c.

1.2 Second-Order Tensor

A second-order tensor T represents a linear function which takes a vector as input and gives a
vector as output. Since we are mostly dealing with vectors in R3,

Definition 1.2.1. A second-order tensor g on R3 is a linear transformation g: R3 — R3
such that

T(oau + fv) = alu+ fTv for any u,v € R? and scalars o, 8 € R.

In describing the behaviour of material bodies we will also require the concept of a linear
transformation between second-order tensors. This leads to the notion of a fourth-order ten-
sor but we defer this discussion until later chapters and concentrate on second-order tensors.
Analogous to representing vectors in terms of standard basis vectors {e;, es, e3} in R3, we
can represent any second-order tensor as a linear combination of the nine second-order tensors
obtained by forming outer products eie]T. In dyadic form,

T
ee; =ee; =¢; X e;.



12 1.2. Second-Order Tensor

For example,

1 010
eie;= |0/ [0 1 0]=1]0 0 0
0 000
We then have
Ty T Tis
g = Tijeiej = |To1 T To3
T3 T3 T3

and the scalars T;; are the components of T' with respect to the standard basis dyads e;e; in
R3%3 -

1.2.1 Tensor algebra
Recall the following dyadic algebra:

(eiej) - e, =e;(ej-e;) and (e;e;) X e, = e;(e; X eg).
There are three basic operations on first- and second-order tensors:

1. The inner product - which retains or reduces the rank of the tensors;

z U = (Tijeiej) . (ukek) = T,-juk5jkei = EjUjei (Rank 1)
u-T= (wie;) - (Tiejer) = Tjruidijer, = Tiusex (Rank 1)
z . é = (Tijeiej) . (Sklekel) = ﬂjSkléjkeiek = Tiijleiel. (Rank 2)

These correspond to standard matrix-vector and matrix-matrix multiplication.
2. The double inner product or contraction : which reduces the rank of the tensors;
T: S =TS (Rank 0)
e: T =¢ejpTike; = cjuiline; = epijTike;. (Rank 1)
3. The outer product or tensor product ® which retains or increases the rank of the tensor;

uRT = (ue;) ® (Tirejer) = uTjre;e;ey. (Rank 3)

A tensor S € R3*3 is symmetric if S” = S and skew-symmetric if ST = —S. It follows that
every second-order tensor S € R3*3 can be uniquely written as

S=E+W,

where £ and W are symmetric and skew-symmetric tensors respectively, having the form

E=5(8+5") and W=_(5-5).

N —
N =
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1.2.2 Isotropic tensor

A tensor is said to be isotropic if its components do not change when we rotate the coordinate
system. For a second-order tensor T, it is said to be isotropic if

Q;QT = g for all rotations Q

All rank 0 tensors are isotropic but there are no nonzero rank 1 isotropic tensors.

Proposition 1.2.2. The only rank 2 isotropic tensor is T;; = o, for any scalars o € R. The
only rank 4 isotropic tensor is

a(Sij(Spq + béip(sjq + Céiqéjp (121)
for any scalars a,b,c € R. An alternate version of (1.2.1) is more useful as we shall see later:
O“Sijépq + 8 (51'105]'(1 + 5iq5jp) + (5ip5jq - 5iq5jp) ) (1-2-2)

where o, B,y are all scalars.

Proof. Consider a general rank 2 tensor 7" with components 7;; with respect to some coordinate
frame {f,, f, f3} and suppose that it is isotropic. Consider the 90° counter-clockwise rotation
about the fs-axis and f,-axis, which can be expressed in terms of the second-order tensor S
and §2 respectively: N

0 -1 0 0 01
S,=11 0 0], 5,=10 10
0 0 1 -1 0 0
Since T is isotropic, the following must be true:
5,187 =T =5,TS"
Expanding these yields
Ty —To1 —Ta3 Ty Ty Tis Tz T3z —Tm
Ty Ty T | = |Ta To Toz| = | Tz T2 —Tn
—T3 131 Ti3 T3 T3p T33 —Ti3 T Tn

Comparing the first two matrices, we see that T3; = Ty and

T3 =Tz =153 = T3 ="T13=0
—T39 =13 =T = T30 ="1T3 = 0.

Comparing the last two matrices, we see that T7; = T33 and Ti1s = T3 = 0, Ty = Thg = 0.
Therefore all the off-diagonal elements of T are zero and all the diagonal elements are equal,
say «. The claim follows. |
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1.2.3 Gradient, divergence, curl and Laplacian

Suppose I’ =T (x) is a spatial-dependent tensor field. Recall the del operator V in Cartesian
coordinates

0
V = 8—%81‘ = 8xi€i = azez
The gradient of a tensor field T of any rank is defined as
VE=V®T.

Note that VT is one rank higher than T. For a scalar function ¢(x),
Vo = (0ie;) ® ¢ = 0;0e;.

For a vector field u(x),

Vu = (0ie;) ® (uje;) = diuje; ® e; = d;uje;e;.
The divergence of a tensor field g of any rank n > 2 is defined as

divl=V-T.
Note that div I is one rank lower than T'. For a vector field u(zx),
V-u=(0€) - (uje;) = 0uj(e; - €;) = du;d;; = Oju;.

For a rank 2 tensor field T'(x),

V.- T = (0ie;) - (Tirejer) = 0iTjrijer, = OiTipey,

ie. V-T =(V-T1,V-T,,V - T3)" with T; the ith column of T.
The curl of a vector field u(x) is given by
V X u = (Onen) X (Un€n) = OmlinEijk€m, i€n €k
= mungijk(siméjnek
= OmUnEmnk€i-

The vector field w is said to be irrotational if V x u = 0. Interpreting u as the fluid velocity
field, the curl at a point & provides information on the direction and angular speed of the
rotation at x. Last but not least, we introduce the Laplacian operator which is simply the
composition of the divergence and gradient operator, i.e.

A=V?*=V.V.
For a scalar function ¢(x), the scalar Laplacian is
Ap =V Vo = (die;) - (9;0€;) = 0:0;00;; = 0,0ip = 0} ¢.
For a vector field u(x), the vector Laplacian is
Au =V -Vu = (0;&;) - (Ojure;er) = 0;,0;ui;je; = 0;0;urex,

i.e. Au = (Aui, Auy, Aus)’. For completeness, we state without proof the following proposi-
tion involving several vector identities.
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Proposition 1.2.3. Let ¢ be a scalar function and w a vector field. Then

V- (pu
(sb

(
V x(V

ng u+ ¢V -u

) =
)=
u)
u) V( u) — Au.

1.3 Generalised Divergence Theorem

We state without proof the divergence theorem for a vector field, which is one of the most
important result in vector calculus.

Theorem 1.3.1 (Divergence Theorem). Let V' be a Lipschitz domain in R3 with piecewise
smooth boundary OV = S. If u is a C vector field defined on a neighbourhood of V, then

/V-udV:/u-ndS,
1% S

where n s the outward unit normal vector on S. The integral on the right is the flux of u
across the boundary (oriented surface) S.

One can generalised the divergence theorem to second-order tensor fields.

Theorem 1.3.2 (Generalised Divergence Theorem). Let V' be a Lipschitz domain in R with
piecewise smooth boundary OV = S. If T is a second-order tensor field defined on a neighbour-

hood of V', then
/V-Ide/?%IdS,
1% - S -

where n is the outward unit normal vector on S.

Proof. Let m = (ny,m9,m3)". The main idea is to apply the divergence theorem to each
component of V- T

v - v A A -

For the last equality, note that

n-T = (ne;) - (Tweier) = n;Tdjier = nTjrey.
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1.3. Generalised Divergence Theorem




Chapter 2

Navier-Stokes Equations

Fluids such as gases and liquids do not have a fixed form or shape in contrast with solid, i.e.
there is no preferred rest state. Nonetheless, fluid offers resistance to an imposed force when due
this force its form changes or when the fluid starts to flow. The so-called simple fluids are those
which have the property that forces are linearly proportional to the rate of deformation; these
fluids are said to be Newtonian. There are also fluids in which the forces depend nonlinearly
on the rate of deformation and viscoelastic fluids that combine the properties of an elastic
solid and a simple fluid, where they react as a solid to fast deformations and as a fluid to
slow deformations, depending on the characteristic time scale of the material. These are called
complez fluids.

At a microscopic scale, fluids are made up of individual molecules. As an example, there
are about 3.3.46 x 10%® water molecules in a litre of water. Although its physical properties
are violently nonuniform, in most situations we are concerned with a macroscopic description
of a fluid motion and this leads to the continuum hypothesis, which states that the fluid
material can be treated as perfectly continuous. Consequently, at each point of the fluid we
can define, by averaging over a small volume, macroscopic properties such as density, pressure
and bulk velocity and that these vary smoothly over the fluid. We shall use the term fluid
particle or fluid element to indicate such a small volume, and small in this case means that the
characteristic length scale related to the volume is small compared to the length scale of the
fluid motion, but large compared to the characteristic molecular scale such as the mean free
path in a gas or the intermolecular distance between molecules in a liquid.

The main goal of this chapter is to derive equations of motion for the fluid velocity on
the continuum level, and these will necessarily have the form of partial differential equations
(PDEs).

2.1 Flow Maps and Kinematics

The description of the fluid motion is called kinematics, and we are interested in the kinematics
of a continuum of fluid. Specifically, we want to mathematically describe the displacement,
velocity and acceleration of fluid material points in the two reference frames commonly used
in fluid mechanics, as we discuss in detail in a moment.

17
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2.1.1 Lagrangian and Eulerian descriptions

Let D C R? be a region filled with fluid. Assume that at time ¢ = 0, the location of a fluid
particle is denoted by a = (ay,as,a3). We can describe the location of such fluid particle
x = (21,29, x3) at any time ¢ > 0 by a flow map ¢, defined as

¢: R®x R — R®
(a,t) — @

and ¢(a,0) = a. We will assume that ¢ is smooth and invertible, the latter means that given
a time t > 0 and spatial location € D, we can identify the unique « for the fluid, 7.e.

a=¢ ' (x,1).

The physical realisation is that no two fluid particles can occupy the same spatial location at
the same time. Mathematically, invertibility means that the Jacobian J = det(D¢) of the flow
map is nonzero, i.e.

aalml a&gxl 8o¢3x1
= 8a1x2 3a2x2 8a3x2 7é0

aCM1$3 aagx:i a043'1‘3

8(1'1, T, 3:3)
a(ah Qg, 043)

) = |

More generally, let 29 C D be a region of fluid at ¢ = 0, which can be viewed as a “chunk” of
fluid in D. We can track the motion of €}y using the flow map:

Qt - Q(t) = ¢<907t)
={x e€D: xz=¢(a,t) for some a € Qp}.

Q) is called the material volume which is a volume moving with the fluid.

Definition 2.1.1. Given a flow map = = ¢(a, t),
1. ais called a material or Lagrangian coordinate; it describes a particular fluid particle;

2. x is called a spatial or Eulerian coordinate; it describes a particular location in space.

For the Lagrangian description we start with a fluid element and follow it through the
fluid. The Lagrangian coordinate a need not be the initial position of a fluid element, although
that is the most common choice. Working in the Lagrangian frame has certain theoretical and
mathematical advantages, but it is often difficult to apply in practice since any measurements
in a fluid tend to be performed at fixed points in space as the fluid flows past the point. On the
other hand, if we wish to observe fluid properties at a fixed location @ as a function of time,
we must realise that as time evolves different fluid elements will occupy the location x. This
constitutes the Eulerian description which is the most commonly used way of describing a
fluid motion.

It is of interest to compare these two descriptions and explore their connections. Because
the velocity at a location @ and time ¢t must be equal to the velocity of the fluid particle which
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is at this position and at this particular time, the Eulerian and Lagrangian coordinates are
related as follows:
O

u(z,t) =u(d(a,t),t) = wn (e, t), (2.1.1)

where w is the fluid velocity field. Given the Eulerian velocity field, computing Lagrangian
coordinates is therefore equivalent to solving (2.1.1) with initial condition (0) = ¢(cx,0) = .

Example 2.1.2. In one dimension, consider the velocity field given in Eulerian coordinates by

u(z,t) = 1—_{1 The Lagrangian coordinate ¢(«,t) can be found by solving

d¢
E(avt) = u(gb(a,t),t)) -7, 7

o(a,0) = .
This is a separable ODE and its solution is
(o, t) = C(1+1)* = a(l+1)2
The Lagrangian velocity as a function of v and ¢ is

99

E(a,t) =2a(1+1),

which can also be found by evaluating the Eulerian velocity at z = ¢(a, t).

2.1.2 Material derivative

Since we have different way in describing the flow, care must be taken in defining the “time
derivative”. Let f(x,t) be some quantity of interest defined at each fluid particle, where @ is
understood to change with time at the local flow velocity u, i.e.

d!L‘Z‘

%:ui, 221,2,3

There are two notions of time derivative of f:

or = or = time rate of change of f at a fixed location x.
ot ot x fixed

D

br = g = time rate of change of f for the fluid particle
Dt ot o fixed

which happens to be at location @ at time ¢

= material derivative or Lagrangian derivative.

0 D
Using Chain Rule, we obtain an explicit relation between g and Ht:

Df _ of dvy  Of dvy  Of dxy | Of
Dt  Oxy dt  Oxy dt  Oxy dt Ot
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Cof of  of  of
N ot + 3371“1 + 8x2u2 + (91:3

_9f
—EJru-Vf.

Uus

The difference between the usual time derivative and the material derivative is best il-
lustrated with the following example. Assume that water is flowing through a pipe with a
constriction and the motion is steady, ¢.e. the velocity at any spatial location @ is not chang-

T
ing in time; this means that — = 0. However, if we follow along a particular fluid particle, its

material derivative is changing since its velocity is varying at different spatial location. Indeed,
the velocity in the middle of the pipe is greater due to the geometry of the pipe, since the fluid
flow is steady by assumption.

—>—>—>\\// - — —

—_ - 5 — —
— > S — = — —
— > S — = — —

—>—>—>//\\ - — —

Figure 2.1: The direction field of a steady fluid through a constricted section of a pipe.

Example 2.1.3. Consider the flow field
u(z,t) = (zy)’e, + ze” e, + cos(2z2)e..

The fluid acceleration in an Eulerian frame is

ou(x,t) 0 o, _, 0
— a((xy)z)ex - E(ze Ne, + a(cos(%z))ez
= —aze “e,.
. . . . Du(x,t) . .
The fluid acceleration in a Lagrangian frame is given by D Computing u - Vu gives

u - Vu = (u;e;) - (Ojure;er) = u;0juid; ey

= ujajukek,

which results in

Du(x,t)  D(x*y?) N D(ze™) D(cos(2xz))
= e+ ———e, +——
Dt Dt Dt
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We are left with finding the material derivative of u(x,t) component-wise:

D(x2y2) o 8($2y2) 2 2
D - o +u - V(z7y?)

=u- (QnyegC + 2x2yey)

—at

= 22%y* + 22%yze
D(ze™®)  O(ze ™) Y
i = 5 +u-V (ze t)
= —aze "+ u- (e_atez)
= —aze ™ + e cos(222)
D 2 0 2
(COZS)(t 72)) = (Cosa(t 72)) +u -V (cos(2z2))
=u - (—2zsin(2zz)e, — 2zsin(2zz2)e,)

= —22%y*zsin(212) — 2w sin(222) cos(222)

= —22%y*zsin(2r2) — x cos(4wz).
Hence,

Du(x,t D(x%y? D(ze™ D 2
(z,t) _ Dla’y’), . Dlee )ey+ (cos(222))
Dt Dt Dt Dt

= [2x3y4 + 2x2yze_°‘t} e,

+ [—aze™ 4+ e cos(2z2)] e,

€.

+ [—22°y*zsin(2z2) — z cos(4a2)] e..

Theorem 2.1.4 (Euler’s Identity). Let J be the Jacobian of the flow map ¢. The material

derivative of J satisfies
DJ

Dt
Proof. Recall the Jacobi’s formula: If A(t) is an n X n matrix with real entries (a;;(¢)), then
the derivative of its determinant det(A(t)) is given by

d i d
4 ldet(a0)] = Y- (Goo(0) 45

i,j=1

JV - u. (2.1.2)

where A;; is the (4, 7) cofactor of A. We abuse the notation and denote the (i, k) cofactor of
the derivative of the flow map by J;. It follows that

k=1
3
Dz;
= i;1 % ( D:i ) Jik [Exchanging order of derivative.]
= 2 (ui( (e, t) 1)) J; [From (2.1.1)
- aak 7 y U)o i 1),
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3
= Z (Zl gz; %) Jik [Chain rule.]
=

If © = 7, then

Otherwise, we have that

3 3

DJ A °. Hu,

2.1.3 Pathlines, streamlines and streaklines

In kinematics, we assume a-priort knowledge of the fluid motion through an Eulerian velocity
field u(x,t) or a Lagrangian coordinate * = ¢(a, t), irrespective of the cause of the motion.
Understanding the field lines, i.e. certain level sets associated to the underlying velocity field
u = (ug, Uz, usz), can be useful in fluid dynamics.

1. At any fixed time ¢, streamline is a curve which is everywhere tangent to the velocity
field u(ax,t), i.e. an integral curve of u(x,t) for ¢t fixed. Mathematically, the streamline
(x(s),y(s), z(s)) satisfies the system of equations

% =y (z(s),y(s), 2(s), 1)
3_‘1; = uy (z(s),y(s), 2(s), t)
% = ugz (x(s),y(s), z(s),t)

where s is the parameterisation variable of the streamline. The shape of the streamlines
1s obtained by eliminating the parameter s.

2. A particle path consists of points occupied by a given fluid particle as it moves in
time. Mathematically, the particle path (z(t),y(t),z(t)) is the solution to the initial-
value problem

dx
dt

%:W@@w@ﬁwﬁ,mmzm

=ux (:L’(t),y(t),z(t),t) ) I(O) = Zo,
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dz

dt
where (g, Yo, 20) is the particle’s initial location. Physically, particle paths are trajectories
of fluid particles. The shape of the particle paths is obtained by eliminating t.

= uz (x(t),y(t), 2(t),t), 2(0) = 20,

3. A streakline is a curve which, at some time ¢, consists of the current locations of fluid
particles all of which were at a given location zy at some earlier time. Mathematically,
the streakline consists of points x(t) satisfying

dx

o= u(x(t),t) and (1) = xy for some 7 < t.

Note that the streamlines, pathlines and streaklines coincide in the case of a steady flow.
For a particular time ¢y, along a streamline we have

As)ds on

where A(s) is an arbitrary function. Since w does not depend on ¢, we must have

dx _ u(x, ty) = 1 dw
dt Y T Ns) ds
The definition of streamlines and pathlines coincides if A(s) is chosen such that
ds 1 s
— == t= [ As)ds.
e /S 0 (s)ds

In other words, time is a specific parameterisation of the streamline. In what follows, we will
show that these curves are very different in general by considering simple two-dimensional flows.

Example 2.1.5. Consider a two-dimensional unsteady flow w(x,t) = (yt,1). Streamlines are
curves x(s; o, t) = (x(s),y(s)) with o = (2(0),y(0)) and ¢ fixed, satisfying

dx dy
g, Yo,
ds 7Y s
Solving the second equation yields y(s) = yo + s, while solving the first equation yields
dz
— =yt = yot + st
ds
ts? ts?
x(s) :C+y0t8—|—7 :x0+y0ts+7.

Eliminating the parameter s, we see that

1
x = 1o+ Yot (y — yo) + 575(3/ —0)?,
i.e. the streamline at a fixed time t is a parabola for any given axy. Pathlines are curves

x(t; o) = (x(t),y(t)) with &y = (2(0),y(0)) fixed but ¢ varying now. They satisfy

dr y dy
ya dt_

— = 1.
dt
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Solving the second equation yields y(t) = yo + t, while solving the first equation yields
dx

— =yt = yot + t*
d Y Yo
y0t2 t3 yOtQ t3
t)y=C+=—=—+ — = —_— 4+ =
x(t) + 5 +3 xo + 5 +3
Eliminating ¢, we see that
1 2 1 3
$=$0+§y0(9—yo) +§(?J—yo),

i.e. the pathline is a cubic curve for any given @y. Streaklines are curves x(t;xo,7) with
(1) = xo fixed but ¢t varying. They satisfy the same differential equations as pathlines but
the initial condition is imposed at t = 7 rather than at ¢ = 0. Solving the differential equation
for y(t) yields y(t) = yo + t — 7, while solving the differential equation for x(t) yields

dz 9
— =yt =yt +1° — 7t

dt
yot> Tt

Z‘(t):O—i-T‘i‘g—?

1 1 T Yo T
- Syt ot L) o (T
x°+(2y° 3" 73 ) ( 2 6

Eliminating 7, we obtain the equation of the streaklines at time t > 7:

1 1 1 1 1
T = —éyg + ityz + §y§y + <$o - §ty§ - 598’) :

Example 2.1.6. Consider the unsteady flow
u=uy, v==rkt, w=0,

where ug and k are positive constants. Since the velocity field is independent of the spatial
variables x, y, z, the streamlines are straight lines. To see this, solving

dx dy dz

— =ug, — =kt, — =0,

ds 0 ds ds

where s is the parameterisation parameter of the streamlines we obtain
x(s) = ups + C4
y(s) = kst + Cy
z(s) = s+ Cs.

For any fixed time t > 0, these equations are the parametric form of the equation of a line in
the three-dimensional Cartesian plane. We can find the particle path of a given fluid particle
by solving

dx dy dz

E:UO, %:kt’ %:0
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This has general solution of the form

kt?
y(t) = 5 + Yo
2(t) =t + 2

where (9, Yo, z0) is the initial position of the fluid particle. In particular, any fluid particle fol-
lows a parabolic path as time proceeds since the y-component of the particle path is quadratic

in t.

Example 2.1.7. Consider the two-dimensional steady flow

u=A\xr, v=-—M\y.

where « is some positive constants. Given a fluid particle initially at e = (a,b), its particle

path can be found as follows:

d
d—f =Xz, 2(0)=a = x(t) = ae™
d
= y(0) = = y(t) =be

Since xy = ab, the particle paths are hyperbolas and the point x = y = 0 where the velocity is
zero is called a stagnation point. Although the Eulerian velocity field is steady, the Lagrangian

velocity field is unsteady. Indeed, it follows from (2.1.1) that

u(o, t) = (AaeM, —\be ).

Figure 2.2: Hyperbolic particle paths of a stagnation-point flow.
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2.2 Conservation Equations

2.2.1 Continuity equation

We assume that there is a well-defined function p(x,t), called the fluid density, such that the
mass of any parcel of fluid €, is

m () = /Q p(@, 1) dV.

We want to derive a PDE for the density, assuming that mass is neither created nor destroyed;
this is known as the law of conservation of mass. More precisely, consider an initial arbitrary
parcel of fluid Qy = Q(0) at time ¢ = 0. Its mass is given by

m (Q) = / p(,0) V.
Qo
Conservation of mass then asserts that
m (o) =m () forallt>0. (2.2.1)

Differentiating (2.2.1) with respect to time, we obtain

o= ([ smori) = ([ torar). 22

Unfortunately, we cannot apply Leibniz’s rule since the domain of integration is time-dependent.
To do this, we make a change of variables = ¢ (a, t) that maps €2; to the initial region €.
Performing the change of variables € = ¢ (a, t) in (2.2.2) yields

d
0=— 1) dVy,
dt\/Qtp(w’)

d
=2 [ st lan) av
Qo
= / E[p((p(a 1) |J(c t)@ dV,, _Leibniz’s rule.}
QO Dt ’ ’ -
= [ %26 (@t 1@t + ot (o) D )| e [Product e
a, L Dt Dt .
=4 _
- —Z|J| + pV - ul|J]| dVy, From Lemma (2.1.2).}
0, LD? (o) -
/D
:/ (Fp—kpv-u) |J|] Vi
Qo L t (i)

= /Qt _g—f(w,t) +pV - u(a:,t)} AVg.

Since €2, was arbitrary, the integrand must be zero and we obtain the continuity equation in
the Eulerian coordinates:

Dp
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This can be rewritten as

dp _Op .
E+u-Vp+pV~u—at+V-(pu)—O. (2.2.4)

In Lagrangian coordinates, the conservation of mass takes the form

D
5; (7P =0 (2.2.5)

which can be seen from the Euler’s identity (2.1.2).

2
Example 2.2.1. Consider the one-dimensional Eulerian velocity field u(z,t) = 1——ft From

Example (2.1.2), the flow map is given by ¢(a,t) = (1 + t)?, with Jacobian

Ox 9
J_é?_a_(1+t)'

Suppose the density satisfies p(a,0) = o and mass is conserved. From (2.2.5), we obtain

Jp=(1+1)2p=C = pla,t) = (lft)Q = (1375)2.

As a function of x and ¢, the density takes the form

plet) = 1+ )+

For completeness, we verify that p(z,t) and u(zx,t) satisfies the Eulerian continuity equation
(2.2.4):

p B 4x 0 222
a V=gt e {(1+t)5}
4x 4x

=T T Y

Remark 2.2.2. We provide another derivation of the continuity equation using the idea of
flux. Consider a fluid whose density is equal to p(x,t) and whose velocity is given by u(x,t).
Let M(t) be the mass of fluid in a region D C R3 at time ¢. Then

M(t):/Dp(m,t) dVy.

By conservation of mass, the rate at which mass of fluid flows out of D must equal the flux of
mass across the boundary 0D, i.e.

_df‘gt“) _ /8 ol tue, ) - dSs,
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where p(x,t)u(x,t) is the flux of mass and m is the outward unit normal of 0D. Using the
divergence theorem and Leibniz’s rule, we obtain

/apdv /v pu)d
/(gf+v (o )> AV, = 0,

Definition 2.2.3. A flow is incompressible if V -« = 0. (This is not a property of a fluid.)
For such a flow, the fluid density satisfies

dp Dp
ot tu-Vp=Tpp Dt

This does not mean that the density is constant everywhere, it simply says that if we start with
a chunk of fluid with density p, then it remains unchanged along that chunk of fluid. However,
a fluid of constant density without mass addition must be incompressible.

= 0.

For an incompressible flow, an initially homogeneous fluid remains homogeneous. More
precisely, if in addition to incompressibility, the initial density is constant, i.e. p(x,0) = po,
then p(x,t) = po for all x,t. Another simple consequence of incompressibility is that the
volume of a chunk of fluid does not change. If the flow is incompressible, it follows from the
Euler’s identity (2.1.2) that

DJ

Dt
Since J(a,0) = 1, we must have J(a,t) = 1 for all t > 0, i.e. J is the determinant of the
identity matrix. For a fluid ©(0) occupying €2(¢) at time ¢, the volume of Q(t) is

yQ(t)\:/Q o= | u(a,t)ydva:/ dv, = [9(0)].

Qo

=0 = J(a,t)=C.

2.2.2 Reynolds transport theorem

By a similar argument to the derivation of the continuity equation, we can derive a more gen-
eral result, known as the Reynolds Transport Theorem:

Theorem 2.2.4. If F(x,t) is a scalar function that is defined in the fluid, then

d OF
- QtF(cc,t)de—/ (EJFV (F )) dVa.

A special case and practically more useful of the Reynolds Transport Theorem is as follows:
Given a fluid density p(x, t),

N @ ) F (@, ) v, = / p—dV (RTT)
dt Q Q.
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Indeed, a simple application of product rule gives

4 Qthde—/Qt (@+v-wu)) av,
:/Qt (F%ija&—]Ziju-VFjLFV-(pu)) dVy
= mﬂ%dvx,

where the last equality follows from the Eulerian continuity equation (2.2.4).

2.2.3 Conservation of linear momentum

Observe that the continuity equation is a single equation with four unknowns functions p
and the three components of w. We require three more equations and these are provided by
Newton’s laws of motion for the fluid. Recall that Newton’s second law of motion states that
the time rate of change of linear momentum of a particle equals to the sum of forces acting on
the particle. For a blob of fluid occupying €2(¢) at time ¢, its linear momentum is given by

— [ plz, t)u(x, t) dV,. (2.2.6)
dt Jo,

We distinguish two types of forces acting on the blob of fluid €;:

1. Body forces such as gravitational or electromagnetic force can be regarded as forces acting
throughout the volume. We denote by F(x,t) the external force per unit mass.

2. Surface forces such as pressure or viscous stresses can be regarded as forces acting on the
volume through its boundary. We denote by ¢(x,t) the force per unit area exerted at
x on fluid inside €2; by the fluid outside §2;. t(x,t) is sometimes called the traction or
stress vector.

Including these two forces we obtain

D
/ pla. t) () dVy = / plz,t)Fy(z,t) dV, +/ t(z,t)  dSe.  (2.2.7)
Q4 Dt Q S—m——— o S——
volume force density surface force density

Theorem 2.2.5 (Principle of local stress equilibrium). Let ¢ be some characteristic length for
a sequence of regions around a point x. Then

i.e. there is no net force due to fluids around it.
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Proof. Suppose {Q(t)} is a sequence of regions of a given shape around a point & with char-
acteristic length [, say the cubic root of its volume, such that the region becomes smaller as
¢ — 0. The volume and surface area of ,(t) are proportional to £ and ¢? respectively, with
the proportionality constants depending only on the shape. Consider (2.2.7) over the region
Q(t). Dividing each side by £* gives

1 Du 1 1
— p—de:—/ oF de+—/ tdS,.
 Jo,m° Dt 2 Jon' " C Joo, )

Assuming all the integrands are bounded. If we allow €,(¢) to shrink to the point @ while
preserving its shape, we see that the volume integrals converge to 0 as ¢ — 0 and the theorem
is proved.

[ |

Corollary 2.2.6. Below are a few consequences of the principle of local stress equilibrium:

(a) t cannot be a function of  and t only. We assume that it depends also on n, the outward
unit normal of 0 at the point x, i.e. t =t(x,t,n).

(b) t must be odd with respect to m, i.e. t(x,t,—m) = —t(x,t,n). This is equivalent to
Newton’s third law of motion, which says that the stress vector acting on opposite sides of
the same surface is equal in magnitude and opposite in direction.

(¢c) Most importantly, t depends linearly on n, and it has an explicit representation formula
t(x,t,n)=n- T(x,1),
where T (x,t) is the second-order tensor called the Cauchy stress tensor.

Proof. To prove this, consider a tetrahedron with three faces Ay, A, A3 oriented in the coor-
dinate planes, and with an infinitesimal area dA oriented in an arbitrary direction specified by
n. Shrinking the tetrahedron and assuming that the stress vector is constant in the shrinking
tetrahedron, we obtain from the principle of local stress equilibrium

. 1
0= lim — [t(m, n)dA + t(x, —e)dA, + t(z, —es)dAs + t(x, —es)dAs|. (2.2.8)

We claim that the areas of other faces dA; are n;dA. Indeed, invoking the generalised divergence
theorem with the identity tensor and abusing the notation for n yield

0= / n-
AUA1UASUA3

:/ —eldS—l—/ —egdS—l—/ —63d5'+/nd5
Ay Az Az A

= —dA161 — dA262 — dA3€3 —+ dAn,

as

I~

which then implies

njdA = (n-e;)dA =e; - edA; = dA,.
This together with the fact that ¢ is odd in n reduces (2.2.8) to

. 1
0= dgglo T [t(az, n)dA — t(x, e;)n1dA — t(x, es)nedA — t(x, ex)nadA
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t(x,n) =t(x,e)n +t(x, e2)ns + t(x, e3)n3 = n - L(x),

where
t(xz,e)
I(x) = |t(z, en)
t(x,e3)

Here, T;; is the component of the surface force per unit area in the jth direction on a surface
whose normal is pointing in the ith coordinate direction. 7T} are the normal stresses and

Tij,% # j are the shear stresses.
[ |

Finally, substituting ¢ = m - I and applying the generalised divergence theorem on the
surface integral in (2.2.7) results in

D
/p(w,t)—u(w,t)de:/ p(w,t)Fb(a:,t)dVZJr/ n - T(z,t)dS,
o Dt Qs I -

:/ [p(m,t)Fb(a:,t)—i—V-z(a:,t)] V.
Qy

Since (); was arbitrary, we must have

p (%—? +u- V'u,) =pFy+V-T. (2.2.9)

This is sometimes known as the Cauchy momentum equation. Together with the continu-
ity equation, we now have 4 equations but 13 unknowns p,u,T.

2.2.4 Conservation of angular momentum

It turns out that T' is symmetric according to the law of conservation of angular momentum,
under certain assumptions. Assuming that there are no microscopic scale contributions to the
torque, we have

d
— x X (pu) dV, = sum of torques acting on €(t) (2.2.10a)
:/ x x (pFy) dVy —i—/ xx (n-T)dS,. (2.2.10Db)
Q(t) o9(t) o

We now prove two useful identities that will allow us to invoke the law of conservation of linear
momentum (2.2.9) and greatly simplify (2.2.10).

Lemma 2.2.7. Let T be a rank 2 tensor, T, w,n rank 1 tensors and € the permutation symbol.

(a) For a region D C R?® with boundary D, the following identity holds:

/ xx (n-T) dSm:/[wx(V~£)+5:g AV (2.2.11)
oD D
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(b) For a moving region € and density p, the following identity holds:

d Du
< AV, — d 92.2.12
o Qt:vx(pu) Va /thx< Dt) V. ( )

Proof. For part (a), we first write out the integrand of the integral over D:

x (V-T)+e: T = (vie;) x (0;Tjrer) + eijuljre;
= l‘iajT‘jkEikmem + 5ijkT‘jkei

- xiajirjkgikmem + 5mjk7}kem-

Applying the generalised divergence theorem onto the left integral yields

/ T X (nz) dS, = / (xie;) x (njTjrer) dSy
oD - oD
_/ nszjjjkgzkmem dS
/ 8 k Eikm€m dV
= / 2i0; Tik€ikmem + Tjk0;xi€ikmen AV
D
= / x,;(?jTjkgikmem +Tjk5jkmem AV
D

= / xiajj—vjkeikmem + T’jkgmjkem dva:
D

:/ [a:x (V~£)+€:g dV.

Part (b) is essentially an application of the Reynolds Transport Theorem (RTT). First,
observe that we can factor out the scalar function p on each side, so it suffices to show that

d Du
4 v, — ) g
pn Qtp(al:xu) % /Qtp(ccht) V.

Applying the Reynolds Transport Theorem (RTT) to the left integral gives

D
% Qtp(a:xu) de:/Qtpﬁ(azxu) AVy.

Thus, we only need to show that

D( « ) ><Du
— (e Xxu)=x X —
Dt Dt

From the definition of material derivative,

D D D
Dy (x X u)= Dy |:<SL’7;€¢) X (ujej)l i (wiujeijrer)

= 5ijk_ (x,-ujek) +u- \Y% (ZEin&Tijkek) s
ot
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and expanding the second term yields

u -V (zujeiner) = (Umem) - (On (Ti4)) €ijkene)
= €4k UmOn (TiU;) Omney
= EijkUmOm (T;u;) ey
= €ijkUmOimUj€ + EijkUmT;OmUjey,

= EijkUiU € + Eijkxiumﬁmujek.

Consequently,

D
— (x X u) = gip— (vujexr) + u -V (vu;61€x
Dt ( J 8t ] J J )
= g;pTi0u ey + [Eiijinek + €ijk$iumamUjek]
= EijkUiU €L + x; [&uj + um(?mu]] €ijk€k
Du

=uXu+rx—.
* Dt

The desired statement follows since u X © = 0.

It follows from Lemma 2.2.7 and the Cauchy’s equation of motion (2.2.9) that

D
/a:x p—“ de:/a:x(pr)de—i—/ xzx (V-T) dV$+/5:Ide
Q4 Dt Q¢ Q - Q -

0:/ e: T'dVy,.
Q

Since (); was arbitrary, we must have
e: I = 8@'}61}'}661‘ =0.
Componentwise,

0=ceypTir =Tos — T30 = To3 =13
0=e9j1 T = T31 — T3 = Ti3="1T3
0=ce3jp i =Tio —To1 = T =15

and so T is a symmetric rank 2 tensor, i.e. T now has 6 unknown components instead of 9.
This is true for any nature of the deformable medium, as long as the net torque on the chunk
of fluid is due simply to the moment of the body force per unit mass F', and the moment of

the stresses t =n - g on its surface.

2.2.5 Conservation of energy

The energy of fluid particles has 2 pieces:
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1. Kinetic energy that is due to the motion of the velocity field. The kinetic energy density
is given by

Sol tu(, 1) - u(w, 1) = 2o, 1) ule, 1)

2. Internal energy e(x,t) that is basically due to differences between molecular velocities
(which we are not tracking) and the macroscopic velocity w. The internal energy density
is given by p(x,t)e(x,t).

The principle of conservation of energy says that the time rate of change of energy of fluid in
Q) is equal to the rate of work done by forces acting on fluid in €2; and the rate of internal
energy movement across 0€);. Let g(x,t) be the internal energy flux vector, then

4
dt Jg,

:/ u-prde—i-/ u-tdSm—/ n-qdS,.
Qt 0 o

1
(golull + e ) av,

To simplify the first surface integral, observe that

u-(n-T)—n- (T u)=(ue)- ((nje;) - (Thmeren)) — (nie;) - (Tirejer) - (umem))
= (wie;) - (njTjmem) — (ni€i) - (Tjmume;)
= UijijSim - niumij(Sij
= U N5 L — Nt Ty, = 0,

Therefore

/u-tdSm:/ u~(n-£)d5’m:/ n~(£-u)d5w
O O o

= [ V- (T u) dV,.
o8 -
where we used the fact that T is symmetric. Consequently, applying Reynolds Transport
Theorem (RTT) on the LHS and the generalised divergence theorem on the second surface
integral yields

/ prea (1||u|| +€) dv, :/ (pu Fy+ V- (L-u)—V-q) dVs. (2.2.13)
O Dt 2 O -

On the other hand, taking the dot product of u against the Cauchy’s equation of motion (2.2.9)
gives

Du
p’u,-ﬁ:pu-Fb—i—u- (Vg)
D (1
pps gu-u =pu-Fy+u-(V-T) (2.2.14)
Substituting (2.2.14) into (2.2.13), we obtain the equation
De
p— =V-(L-u)—u-(V-T)-V-q. (2.2.15)

Dt



Navier-Stokes Equations 35

Applying the next lemma results in the conservation of internal energy equation:

De
PDi

Lemma 2.2.8. V- (g . u) —u- (V . g) is a double contraction and it equals to I': D, where
D s the symmetric part of the velocity gradient tensor Vu.

=T:D-V-q. (2.2.16)

Proof. We first expand the given expression:
VA(T-u)—u- (V-I) = (9e) - (Tjrejex) - (umem)) — (uie;) - ((95€5) - (Tnkemer))
= (0ie;) - (Thrure;) — (uie;) - (9;Tjkex)
= 0; (Tjrur) 6ij — wi0; T
= 0; (Tirur) — urd; T
= Tjr0ju

=T: Vu.
Now, we decompose 0;juy, as
1 1
@-uk = 5 (@uk + 8ku]) + 5 (@uk — 8kuj) = Djk —+ ij,
where D = Dj; is symmetric and £ = Oy is skew-symmetric; in tensor notation we have
Vu=D +Q.

The desired result follows from the fact that the double contraction between symmetric and
skew-symmetric tensors is zero. Indeed,

T:Q="T;Q; = —T3Q = —T;;{;.
[ ]

Note that the kinetic part of the principle of conservation of energy is somewhat hidden in
the Cauchy’s equation of motion (2.2.9). Let us summarise all five equations that result from
the conservation principles:

pr+V-(pu)=0 (Continuity equation)
pus+u-Vu)=pF,+V-T (Conservation of linear momentum)
pleg+u-Ve)=T:D—V-q, (Conservation of internal energy)

where D = (V'u, + VuT) and the 14 unknowns are p,u,T, €, q.

N | —

2.3 Constitutive Laws

To capture the physics neglected from assuming the continuum hypothesis, we need to pos-
tulate constitutive equations or laws that relate information on the microscopic scales to the
macroscopic scales. These are additional relations among unknowns that model physical pro-
cesses at the molecular scale, not captured in the continuum assumption. For fluid flows, we
postulate constitutive relations between T, q and the basic quantity of interest p, u, e.
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2.3.1 Stress tensor in a static fluid

We start with the simple case of a static fluid under the influence of gravity, i.e. u = 0 and
F, = g = —ge3. The Cauchy’s equation of motion (2.2.9) reduces to

0=pg+V-T. (2.3.1)

If we further assume that the fluid is isothermal, i.e. the temperature is uniform, then ther-
modynamics tells us that the only surface force per unit area is a normal force called pressure

p. Consequently,

j’i.
n-l=-pn=-pn-l = IT=-pl, p=—=

and (2.3.1) becomes
0=pg+V- (—pé) =pg — Vp. (2.3.2)

It is clear from (2.3.2) that p = p(z) since d,p = J,p = 0 and so we are left with solving
z-component of (2.3.2):

dp
0=—pg—— = p(z) = —pgz+ Cp(0) — pg=.

dz
This is the familiar expression for the hydrostatic pressure p, with {z = 0} the air-water
interface and it completely determines the stress tensor for static fluid under the influence of
gravity.

Remark 2.3.1. The equation n - T = —pn also means that the stress has the same value for
all possible orientations of m, i.e. the stress is isotropic. This is known as Pascal’s law and it is
a direct consequence of the fact that a fluid element cannot remain at rest under the presence
of a shear stress.

2.3.2 Ideal fluid

For a moving fluid u # 0, the simplest model for the stress tensor is assuming 7' = —pl and
there is no internal friction, i.e. g = 0. Such a fluid is called an ideal fluid, and the 6
components of the stress tensor T is replaced with a single unknown scalar function p. The
system of conservation equations reduces to

0
p(uy+u-Vu)=—-Vp+pg (2.3.3b)
ple:+u-Ve)=—pV - u. (2.3.3¢)

which is a system of 5 equations with 6 unknowns p, u,p,e. It remains to specify a relation
between p and p, e, i.e. p = p(p, e) from thermodynamics. Such a relation is called an equation
of state. Another solution to resolve this underdetermined system is to assume that the flow
is incompressible, in which the system (2.3.3) reduces to

Dp

Dt—o
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p(ur+u-Vu)=—-Vp+pg
De
— =0.
Dt
In the special case where the initial fluid density and internal energy are homogeneous, i.e.
p(x,0) = po,e(x,0) = ey, we obtain the incompressible Euler equations:

0
Po (8_1; +u- Vu> = —Vp+ pog (2.3.4a)

V. w=0. (2.3.4b)

We may rewrite the right-hand side of the Euler equations by defining the dynamic pressure
P(x,t) satisfying
~Vp+pg=—-V(p+pgz) = VP

We note that the dynamic pressure may be introduced only if the density is uniform, the
gravitational body force per unit volume then being representable as the gradient of a scalar
quantity. An important feature of the incompressible Euler equations is that we do not require
an equation of state. However, the incompressibility assumption has its limitation, as illus-
trated in the following example.

Example 2.3.2. Consider the pressure-driven flow in a channel of length L, with P, and P,
the pressure at the left and right end respectively and P, > P,. Assuming that there is no
variation in the z direction, we look for unidirectional flow of the form u = (u(z,y,t),0,0).

) Y
High Low T
Pressure Pressure
Pl P2 > L
z
L

Figure 2.3: Pressure-driven flow in a finite length channel.

The incompressible Euler equations (2.3.4) simplify significantly to

puy = —0, P
0=—0,P
0=-0.P

V-u=u, =0.

It is clear that P = P(z,t) and u = u(y,t). We first solve for the dynamic pressure P(x,t).
Differentiating pu, = —0, P with respect to x yields
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P(xz,t) = a(t)z + b(t).

Imposing the boundary conditions P(0,t) = P, and P(L,t) = P, we obtain

P—P
P(x,t):< 2L l)x—I—Pl

and the dynamic pressure decreases linearly as expected. Finally we solve for u(y,t).

P - P
L

puy = —0, P =

P — P
pL

u(y,t) = (P1p—LP2) t+uo(y)-

Assuming wuo(y) is bounded, this model seems physically implausible since u(y,t) — oo as
t — 0o. The fundamental reason is that the stress tensor 7' = —pl does not take into account
the relative motion between adjacent fluid particles, which can be thought as friction or shear
stress between moving layers.

Uy =

2.3.3 Local decomposition of fluid motion

From the previous example, it seems that we need to understand the microscopic origin of
shear stress to capture this missing molecular description. Since there is no shear stress in a
static fluid, it is present only if there exists a velocity gradient in the fluid flow. This prompts
us to investigate the local velocity variation near any fixed but arbitrary spatial point @

Choose a sufficiently small h > 0 and for simplicity assume that the flow is steady. Ex-
panding w around the point @ yields

u(a:—l—h)—u(w) Vu(x)-h+ (||h||)
u(z) + (D(z) + Q=) - h + O (|[1]),

where

(x) = rate of strain/deformation tensor

1 IS

(x) = vorticity tensor.

To see how these names arise, we examine their geometrical meanings in terms of kinematics
of the fluid particles. Let y = « + h. Since « is fixed, we also have

D - W ()~ ul@) + D)+ Q) b,

which is linear in h.

1. If Oth = u(x), then h = hy + u(x)t and this corresponds to a rigid translation.



Navier-Stokes Equations 39

2. Consider d;h = Q(x) - h. Since {2 is skew-symmetric, it has only 3 components which are
the components of the curl vector V x u. Define the vorticity w(x) as

aQU;; — 83u2 w1
w(x) =V xu= |03u; —Oiug| = |[w
81U2 — 02u1 w3
Consequently,
0 —Ws3 W9
2 = = w3 0 —W1
—Wwy Wi 0
and
1
% =Q(x)-h = 5((.0(33) X h>.

The geometrical interpretation of the cross product tells us that the vector 0,k is rotating
about the axis w/||w|| with angular velocity ||w||/2. Moreover, it is a rigid rotation since
the length of h is constant:

d d dh
—|h)|*=—=(h-h)=2h-— =h- h) = 0.
CIRIP = S (hh) =2k SF =k (w x h) =0

The vorticity w acts as a measure of the local spinning motion.

3. Suppose d;h = D(x) - h. Since D(x) is symmetric, there exists orthonormal eigenvectors
{é1, &5, é3} with corresponding eigenvalues dy, do, d3 such that

D(x)e; =d;e;, j=1,2,3.
Since the eigenvectors form a basis of R*, we can decompose h(t) as
h(t) = hy(t)ey + ho(t)és + hs(t)eés.
It follows from linearity of D(x) that
3

2 dhc;t(t)éj =D(=) (Z ﬁj(t)éJ-) =3 (4hsv) &

J=1

and using linear independency of {&;, &3, €3} we obtain a system of 3 x 3 uncoupled ODEs

= d;h;(t), j=1,2,3.

This says that a fluid element is either stretched or shrinked in directions e; according to
the sign of d; and deforms into a parallelepiped. Because of this, D(x) is called the rate
of strain/deformation tensor and the eigenvectors {é;, &;, €3} are called the principal
direction of the rate of deformation tensor.
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Hence, the flow in the neighbourhood of any point « is decomposed into a rigid translation
u(x), a rigid spinning motion Q(x) - h and a flow involving deformation D(x) - h. Observe
that

— Ehghg + hld—hg + hlhgg
= (dy + da + dy) (ihahs

=tr (2) <l~1171277/3>

= (V . ’U,) <iL1?L2713> .

Since D(x) is unitary equivalent to the diagonal matrix A = diag(d;, d», d3), we obtain

(ﬁ ~ - ) dhy > - dhy + dhs

d1+d2+d3:tr(/\):tr(2):D11—|—D22+D33:V-u.

Consequently, the relative rate of change of volume of fluid element is

1 d
hihohs) =V - u.
hyhohs dt ( 1 3)
If the flow is incompressible, then
d /- - -
E <h1h2h3> - 0,

which means the fluid element stretches at some direction and shrinks at the other direction.

2.3.4 Stokes assumption for Newtonian fluid
In general, we may write the stress tensor T as
I'=-pl+o.

We expect that g depends only on its symmetric part since both T and [ are symmetric. It is
also clear that ¢ is due to the fluid motion because we must recover T = —pl in the case of
static fluid. To obtain a constitutive relation for the stress of fluids that depends on relative
motion, Sir George Stokes (1845) postulates the following:

1. ¢ should vanish if the flow involves no deformation of fluid elements;
2. T does not depend explicitly on the location & and time ¢ (Homogeneous);

3. the relationship between ¢ and the velocity gradient should be isotropic, as the physical
properties of the fluid are assumed to show no preferred direction (Isotropic);

4. T is a continuous function of D and is otherwise independent of the fluid motion (Local);
5. T depends linearly on D (Linear).
These suggest that T’ has the form
Tij = =pdij + CijpgDpq;

where Cjj,, are 81 constants.
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2.3.5 Cartesian tensors

A major requirement for an object to be a tensor is that it transforms in a specific way
under changes of Cartesian coordinates. This is motivated by the fact that any physical laws
expressed in any two different Cartesian coordinate systems (x1, z2, 23) and (2], 25, %) must be
consistent. Let {ej, ey, e3} and {e), €), €4} be unit basis vectors in the unprimed and primed
system respectively. Consider a point P in R? with coordinates (1, zs, x3) and (2}, 75, x4) in
the unprimed and primed system respectively. Then

!/ ! ! AN

How are {z1, xq, x5} and {x}, 2%, 24} related? Taking the inner product of P against e; yields
3
v, =e;-P=e;- (x;e;) = (€; - e;) tl = Ll = Zﬁijx;»,
where /;; is cosine of the angle between unit vectors e; and e;». Similarly, we have

v, =€ P =e;-(vje;) = (€ ) x; = ljx; = ZKJZ‘%‘J
It can be shown that

Uiilyy = Ll = 0y = ééT = éTé = £7

where L is the second-order tensor with components £;;.

Definition 2.3.3. An nth-order tensor C'in R3, n = 1,2,3,... is an object such that

1. In any Cartesian coordinate system, there is a rule that associates C' with a unique
ordered set of 3" scalars C},;,. ,, called components of C in that coordinate system.

2. If Ciiy.4, and Cy,g,.. 4, are the components of C' with respect to two different Cartesian
coordinate systems, then

Cirig.iin = li1q1li2qg ------ lin71qn71lin%cq1qz---qn-
It follows from the definition that any second-order tensor I’ must satisfy the consistency

rule
= lipl; qT’

To see this, consider the surface traction vector ¢ = n-T. In the unprimed and primed systems,
we have

3
/ /
ti :,I;jn E ij g, i :giptp = E &'ptp
p=1
3
/ r_ o
t - qunq - Z Pq q’ = Lialy = Zéﬂnq'
q=1
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If these are consistent, we must have
ti = &pt; = &pTquTL;
= &pT];qﬁjqnj
= Tijn;
— (ﬂj — Eipﬁqu;q)nj = 0.

For this to be hold for n;, we must then have T}; = lipquTéq as expected.

2.3.6 Stress tensor for Newtonian fluid
Going back to the stress tensor
Tij = =dij + CijpgDpq;

we argue that Cjj,, must be a fourth-order tensor since T;; and 9;; are both second-order
tensors. In fact, it must be isotropic from Stokes’ isotropic assumption. Now, any fourth-order
isotropic tensor can be written as

Clijpg = @0;j0pq + bipdjq + c0ig0jp
= >\5ij5pq +p [5ip5jq + 5iq5jp} TR [5ip5jq - 5iq5jp :
Since T' and [ are both symmetric, we must have
CijpaDpg = CliipgDpg = Cijpg = Clipg for all ¢,5,p,q =1,2,3.
Therefore Kk = 0 and
Tij = =i+ Adigdya Dy + 1 (Sipdia + Giadip) Dy

= —pbiy + A0te(D) + Dy + Dy

= ( —p+ AV u)éij +2uD;;.
The parameter p is the shear viscosity and the parameter A\ relates to the bulk viscosity

which is important only when the fluid is being rapidly compressed or expanded.

Definition 2.3.4. A Newtonian fluid is a fluid with stress tensor of the form
T=(=p+AV-u)l+2uD, (2.3.5)

for some scalars A, p.

Remark 2.3.5. Because the trace of any second-order tensors is invariant with respect to a
change of basis, we can define the “mechanical” pressure P as
1

1
P, = —gtr(z) =3 [Tn + 1o + T33] (2.3.6)
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and it is related to the thermodynamic equilibrium pressure p according to

1
Pm:p—§<3/\—|—2u)v-u:p—77v-u, (2.3.7)
where 5 P
b— I,
= A+ -—pu= 2.3.8
N=Aton=o (2.3.8)
is the bulk viscosity. Consequently, the Newtonian stress tensor can also be written as
1
T =—-pl+2u (Q = g(V u)]> +n(V-u)l, (2.3.9)
or, in terms of P,,,
1
T =—-P,l+2u <Q — g(V . u)i) . (2.3.10)
Writing the stress tensor as T’ = —F,,1 + 7, these two stress tensors are known as the mean

normal stress tensor and the deviatoric stress tensor respectively.

2.4 Isothermal, Incompressible Navier-Stokes Equations
Recall the three conservation equations

Op+V-(pu)=0
plu+u-Vu) =pFy+V-T
ples+u-Ve)=T: D~V -q

They form a system of 5 equations with 14 unknowns p, u, €, g and six components of T'. The
three constitutive equations are

T = ( —p+ V- U)é +2uD (Newtonian fluid: 6 equations, 1 unknown p)
q=—kVT (Fourier law: 3 equations, 1 unknown 7')
p=p(pe) (Equation of state: 1 equation)

Suppose the initial fluid density is homogeneous. Under isothermal conditions, the temperature
T is constant and so ¢ = 0. The conservation of energy equation reduces to

ples+u-Ve)=T: D,

which says that e can be determined by knowing 1" and D, or equivalently, the pressure p and
the velocity field w. Together with the incompressibility condition and Fj, = g = —ges, we
arrive at the isothermal, incompressible Navier-Stokes equations

(%—t e vu) — VP + pAu (2.4.1a)

V.-u =0, (2.4.1b)
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where P is the dynamic pressure and p is the dynamic viscosity. We mention that the
pressure p is the Lagrange multiplier of the linear constraint V - 4 = 0, and this is nontriv-
ial to prove. (A proof of this statement in the case of the steady Stokes equation can be
found in [Ozal7].) For nonuniform density, we replace the incompressibility condition with the
continuity equation

dp

E"‘U'V,O:O

and an equation of state for the pressure p is needed since (2.4.1) now has 4 equations with 5
unknowns. To see how the vector Laplacian term arises in (2.4.1), note that

2V - D =2(0;e;) - (Djrejer) = 20;Dji.d;5ey,
= 20]-Djkek
= 8j (a]Uk + 0kuj) (S

For any k € {1,2,3},

8]- (@uk + 8kuj) €, — (8j8juk + 8j8kuj) €
= (Auk + 8k8juj) €
= [Aug + 0 (V - u)] ey,

where we assume that u is C? so that we can interchange the order of partial derivatives. The
incompressibility condition then gives

aj (8juk + (9kuj) e = (Auk) e — QIMV . Q = ,uAu.

Remark 2.4.1. If the inertial effects are negligible, then we may eliminate the term w - Vu
and obtain the (unsteady) Stokes equations. If the viscous effects are negligible instead, then
we may eliminate the Laplacian term pAw and recover the incompressible Euler’s equations;
the fluid is said to be inviscid in this case.

2.5 Boundary Conditions

To solve the incompressible Navier-Stokes equations, we must specify initial and boundary
conditions. For an infinite domain, we impose the far-field condition: u — 0 as & — oo.
For a bounded domain, we distinguish two types of boundary conditions (BCs):

1. Velocity BCs.

(a) Kinematic BC: It is clear that the component of the velocity normal to the boundary
S must be continuous across S. This follows from the conservation of mass, since
the boundary will accumulate mass otherwise. For a stationary solid wall, this is
known as the no-penetration or no-flux boundary condition:

u-n =0 on the wall.
For a moving solid wall,

U7 = Uy - N on the wall.



Navier-Stokes Equations 45

For a moving (deformable) boundary, the kinematic BC can be rephrased in the
following equivalent way. Define the time-dependent boundary as the level set of
some implicit function F(x,tf) = 0. Fluid particles on the surface must remain
on the surface as time evolves and consequently the material derivative of F' must
vanish, i.e.

DF

Dt
This is applicable to water waves problem where we have a moving interface between
water and air, called the free surface.

=0 on the moving boundary.

(b) Tangential BC: This is only applicable to viscous fluid but not ideal fluid, essentially
because ideal fluid is “slippery”. Suppose that the pressure varies near the boundary
along the wall. The only force a fluid element can experience is a pressure force
associated with the pressure gradient. If such gradient at the wall is tangent to the
wall, then fluid will be accelerated and there must be a tangential velocity at the
wall. This suggests that we cannot place any restriction on the tangential velocity
at a solid wall. In terms of the well-posedness of PDEs, we require another BC in
addition to the no-penetration BC due to the Laplacian term that only appears for
viscous fluid.

i. We demand that the component of the velocity tangential to the boundary S
must also be continuous. This is known as the no-slip condition and it cannot
be derived from fundamental physics. For a moving solid wall, it takes the form

u— (U 1) = Uy — (Uyan - )1 on the wall.

Note that this breaks down on the molecular level but it remains a good ap-
proximation for small-scale problems.

ii. The no-slip BC causes a problem in the moving contact-line problem, since it
leads to a infinite-force singularity at the moving contact line. This can be
resolved by introducing the Navier-slip condition:

u—(u-n)nzﬁ[z-n— [(gn)n}n} on the wall,

where (3 is the (emperical) slip coefficient. This says that the tangential (slip)
velocity is proportional to the tangential component of the stress on the wall.
For a shear flow (u(y),0,0) of a Newtonian fluid, this slip condition translates
to u = Buu,, where pu, is the shear stress on the wall.

2. Stress BCs. This is considered on free surface problems where it involves a fluid-fluid
boundary S. The tangential stress across S should be continuous, and the condition on
normal stress across S is somewhat more complicated because of the presence of surface
tension.

2.6 The Reynolds Number

To compare the magnitude of terms in the incompressible Navier-Stokes equations with actual
numbers, we non-dimensionalise the equations. To this end, let L,U,t., P. be characteris-
tic length, velocity, time, pressure scales respectively and define the dimensionless variables
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&, u,t, P as follows:

G = o = i=— p=

P
P.

Sle

T
T
From chain rule we obtain

o 19 9 10

ot t.of dx Lo
Denote the dimensionless differential operator V = 0z,e;. Component-wise, we have

T T e

(u-Vu), =u-Vuy; = Zujﬁ U

= 2 Z ; 0yl

_UTZJ 1uj('%gjuZ
2 ~
=7 (w-va)
VP =G = w1 (9P),

3
(Au), = Ay, =D 02w
- 3
282 g

U
=13 (Au) :
The dimensionless incompressible Navier-Stokes equations are
U\ ou U? e P, ulU
p ( ) o +< )(u-Vu) ——(L)VP+(L2)Au
. ~~ 7 R;—/
inertial term viscous term
U -~

Comparing the magnitudes of inertial and viscous terms, we obtain

linertial term| _ ) (pU%/LY _ o (pULY _ )
|viscous term| pU/L? K
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where the dimensionless number Re is the Reynolds number, having the form

UL _UL
_WL_UL

Re

Thus, the Reynolds number prescribes the relative magnitudes of inertial and viscous forces in
the system.
Multiplying the dimensioness Cauchy momentum equation with L/pU?, we get

L\ ouw _ ~ _ P\ ~ -~ 1
(th)EvLu-VU——(LUZ)VP—I—%Au.

Define ¢, = U/L and P. = pU?, this reduces to

There are two limiting cases:

1. The case Re > 1 suggests that the viscous effects are negligible and there is a bal-
ance between the inertial and pressure terms. We may approximate the dimensionless
incompressible Navier-Stokes equations with the dimensionless Euler equations:

;4@ - Va=—VP.

However, viscous effects become important in thin boundary layers over which the flow
velocity undergoes a smooth but rapid adjustment to precisely zero - corresponding to
no slip. The velocity gradients in this thin boundary layer are so large that the viscous
stress becomes significant even though p is small enough for viscous effects to be negligible
elsewhere in the flow.

2. For Re < 1, we have
Re {%H]ﬁfa} = VP + Aa,

where the characteristic pressure scale is now taken to be P, = pU?/Re. This suggests
that the inertial effects are negligible and leads to the so-called Stokes flow:

~VP+Au=

0
V- 0.

=g
I

We cannot scaled away the pressure term because we need it to satisfy the incompress-
iblity condition.

2.7 Bernoulli’s Theorem

Take the body force to be conservative, that is, F', = —Vx for some scalar potential x. Using
the vector identity

1
u-Vu:(qu)xu+§V\u|2
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1
=w X u—|—§V|'u,|2

we may rewrite the Cauchy momentum equation in (2.4.1) as

1 1
%—?4—(» X u = —EVp—Vx—§V|u|2—%Au
au%—wxu——v Py +1|u|2 —Au
ot B p XTa P
88—1: +w xu=—-VH + vAu, (2.7.1)

where v = p1/p is the kinematic viscosity. If the flow is steady, then (2.7.1) reduces to
wxu=—VH+vAu. (2.7.2)

Taking the dot product of (2.7.2) against u gives
u-VH =—u- ((w X u) + VAU) =rvu - Au. (2.7.3)

Consequently, H decreases in the flow direction when w-Awu < 0, i.e. when the local net viscous
force per unit volume tends to decelerate the fluid and work is done against viscous forces as
an element of fluid moves along a streamtube; similarly H increases along the streamline when
the net viscous force tends to accelerate the fluid [Bat00, Section 5.1].

In the case of an ideal fluid, (2.7.3) reduces to w - VH = 0 which means the directional
derivative of H along the flow field w is zero. This is known as Bernoulli streamline theo-
rem:

For a steady flow of an ideal fluid, subject to a conservative

force Fy = =N, the function H = P + X+ §|u|2 1s constant along a streamline.
p

In particular, an increase of the fluid velocity occurs simultaneously with a decrease in the
(static) pressure or a decrease in the fluid’s potential energy, along a given streamline. Here,
P, X, w depends on the particular point on the chosen streamline but the constant depends only
on that streamline. We point out that the theorem says nothing more than H being constant
along a given streamline, so H may have different constants on different streamlines. However,
H is constant everywhere for irrotational flow, i.e. when the flow field w has zero curl w = 0.

For a steady irrotational flow of an ideal fluid, subject to a conservative

1
force Fy, = =N, the function H = Py X+ §|u|2 is constant everywhere.
p

2.8 Vorticity Equation

As it turns out, the net viscous force on an element of incompressible fluid is determined by
the local gradients of vorticity since

Vxw=Vx(Vxu)=V(V-u)—Au=—Au. (2.8.1)
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This is rather surprising since we know from the Newtonian stress tensor that the viscous stress
is generated solely by deformation of the fluid and is independent of the local vorticity, but
the explanation is wholly a matter of kinematics [Bat00, Section 3.3]. The rate of deformation
tensor D and the vorticity w play independent roles in the generation of stress, but certain
spatial derivatives of D are identically related to certain derivatives of w through the vector
identity used in (2.8.1). It follows from (2.8.1) that the viscous distribution of vorticity is
pivotal in understanding the evolution of large Reynolds number flow , i.e. when the fluid
viscosity is sufficiently small.

The vorticity transport equation is obtained as follows. Taking the curl of the Cauchy
momentum equation in the form of (2.7.1) and using the fact that V x (Vf) = 0 for any C?
scalar function f, we find that

aa—j—l—Vx(wxu)zy(VxAu).

We use the incompressibility condition and the fact that V-w = 0 to cancel out terms. Applying
the vector identity from (2.8.1) to w reduces the viscous term into

VxAu=-Vx (Vxw)=-V(V w)+Aw = Aw.
For the convection term,

Vx(wxu)=wV-u—uV-w+u -Vw—-w- -Vu

=u-Vw—w--Vu.

Combining all the computations leads to the vorticity equation

%+U-Vw:w~Vu+qu
D
F‘: = w-Vu + vAw (2.8.2)

The pressure term has been eliminated in the vorticity equation, with the price that the vorticity
equation contains both uw and w.

Dw
1. The term —— is the familiar material derivative of w, describing the rate of change of w

due to the convection of fluid.
2. The term rAw accounts for the diffusion of vorticity due to the viscous effects.

3. The term w - Vu represents the stretching or tilting of vortex tubes due to the folow
velocity gradients.

4. The term w (V - u) (which is absent due to the incompressibility condition) describes
vortex stretching due to flow compressibility.

In the case of a two-dimensional incompressible inviscid flow, i.e. u = (u(z,y,t),v(x,y,t),0),
the vorticity only has one non-zero component

w = (0,0,0,v — Oyu) = w(z,y,t)es
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and

w-Vu:wa—uzﬂ.

0z

D
Consequently, FC: = 0 and so the vorticity w of each individual fluid particle does not change

in time, i.e. if w = 0 at some time tq, then w = 0 for all time ¢ > ty. This also occurs for a
unidirectional flow, say u = u(y, z, t)ey, since we then have

w=(0,0u, —0yu) = w-Vu= 8zua—u - Gyug—z =

0.
dy

If we further assume steady flow, then

D
FC: =u-Vw=0
and we arrive at the following result:

For a steady two-dimensional flow of an ideal fluid subject to a
conservative body force, the vorticity w is constant along a streamline.

An immediate consequence of this is that steady flow past an aerofoil is generally irrotational.



Chapter 3

One-Dimensional Flow

In this chapter we solve various fluid flow problems of a Newtonian fluid, assuming isothermal,
incompressible flow and uniform density. This produces the isothermal, incompressible Navier-
Stokes equations, which we recall here:

p(Ou+u-Vu)=—-Vp+ pg + pAu (3.0.1a)
V-u=0, (3.0.1b)

We impose the conditions that all components of the velocity are continuous across a fluid-solid
boundary, i.e. no-penetration and no-slip boundary conditions. It is possible to introduce the
dynamic pressure P(x,t) to include the effect of the body force:

— VP =-Vp+pg. (3.0.2)

This implies that the gravity has no effect on the motion and does nothing more than make
a contribution to the pressure p as in (3.0.2), but we mention that this is only true if the
boundary conditions involve only the velocity [Bat00, Section 4.1]. We will need to use the
original expression (3.0.2) later when we discuss in Section 3.3 the steady flow problem down
an inclined plane under the influence of gravity.

The main difficulty in solving (3.0.1) is due to the nonlinear advection term u - Vu. How-
ever, this equals zero in certain special cases and it is sometimes possible to find an exact
solution because the problem becomes linear. Among the simplest of such special cases are the
unidirectional flow in which the direction of motion is independent of the position. Consider
u(x,t) = u(x,t)e; = u(z,y, z,t)e;. By virtue of the incompressibility condition we have

O,u=0 = u=u(y,zt)e;.
We verify that u - Vu = 0:

u - Vu = (u;e;) - (Ojurejer) = u;0;ure; - €jey
= uﬁjukek
= walwel
=0,

where the third equality follows from uy = ug = 0. Thus, the y- and z-components of the
momentum equation reduce to

0,P =0.P =0 = P = P(x,1).

51
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The z-component of the momentum equation is

ou _@ <82u 82u)

Por = o TH\ a2 T a2

Since both the first and last term are independent of x, we deduce that the pressure gradient
is a function of time only
—— =G(t).
ox ®)
For positive GG, the pressure gradient represents a uniform body force in the direction of e;.
In the case of the steady flow, 0;u = 0, GG is a constant pressure gradient and we obtain the
classical two-dimensional Poission equation
Pu  0%u G

Oy? * 022 u’

with boundary conditions that generally prescribe the pressure gradient —G and the value of u
at certain values of y and z. The fluid density p is absent since the total acceleration of every
fluid element is zero. Each element of the fluid is in equilibrium, so far as the x-components of
the forces are concerned, under the action of normal stresses which vary with x (the pressure
gradient) and tangential stresses due to viscosity which vary with y and z. In addition, there
is a normal stress, hidden by the use of the dynamic pressure P, whose variation with position
is such as to make it balance the force of gravity on the element [Bat00, Section 4.2].

3.1 Steady Flow Between Parallel Plane Plate

In the first example, we consider the steady flow between two infinitely long rigid plates that
are separated by a distance d. The bottom plate y = 0 is stationary while the top plate
y = d moves with velocity U in the z-direction. We assume that there is no z-dependence and
that the direction of motion is e;, i.e. we seek a steady unidirectional flow of the form u =
u(z,y)e; = u(y)ey, where the x-dependence on u is absent by virtue of the incompressibility
condition.

As discussed previously, the problem reduces to a second-order boundary value problem

0=G+ pu"(y), u(0)=0, u(d)=U, (3.1.1)

and its exact solution takes the form

Gy? U Gd G U
u=-5+ (G+5) /

— — y=——y(d— —. 3.1.2
o RETE 2My( v+ (3.1.2)
When the two rigid planes are not in relative motion, the flow is a plane Poiseuille flow with

a symmetric parabolic velocity profile

G

uly) = _Ey(d —y). (3.1.3)

When the pressure gradient G is zero, the flow is a simple shear flow, called plane Couette
flow, with a linear velocity profile
Uy
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A notable aspect of the plane Couette flow is that shear stress d,u is constant throughout the
flow domain.

The previous analysis suggests that the flow behaves like a plane Couette (or Poiseuille )
flow if the pressure gradient G' (or the speed of the plate U) is sufficiently small, but small
compared with what? Because the problem has four parameters G, u,d, U and they involve
units, we non-dimensionalise the problem so that we can compare the magnitude of terms
appearing in the solution with just numbers.

1. Choose a characteristic length scale ¢. = d and characteristic velocity v. = U and define
the dimensionless variables

.Y Yy . uu
= —_-—== - u _ —_— = —
YT e "Tu T
It follows from chain rule that 1 d
dy — ddy
and we obtain the dimensionless equation
d*u G
dy?
Uda G
d?dg?  p
d?i Gd?
—}; = —— = —K
dy ulU

with boundary condition @(0) = 0 and @(1) = 1. It should be noted that K is a
dimensionless parameter. The exact solution is

i) =~y (7~ 9) +3.

It is evident that the flow behaves like a plane Couette flow if K < 1, i.e. G < pU/d>.

2. On the other hand, the solution blows up for the other limiting case K > 1 and this
indicates that we need to choose the characteristic scales differently. The issue is that
the terms do not balance as K grows large in the dimensionless equation

&Pu

ap -

To resolve this issue, we define a new dimensionless velocity variable

__E_u_ U
u_K_UK_<G_d2>'
1

which amounts to choosing the characteristic velocity v. as Gd?/u. The new dimensionless

problem is
d*u pwU 1
_ = —1 U —= U 1 — 5 =
de ? U(O) 07 U’( ) Gd2 K
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and its exact solution is
72 1 1
i) =5+ (2 +35) 0
“ 2 T\K "2

We see that the flow behaves like a plane Poiseuille flow if K > 1, i.e. U < Gd?/p.

3.2 Rayleigh Problem

This is a problem concerning the flow created by a sudden movement of a plane from rest.
There are a few variants of the problem, such as infinite vs finite domain and constant speed
plane motion vs time-dependent plane motion.

3.2.1 Infinite domain - constant speed

Consider a viscous fluid in the infinite domain y > 0 and suppose that at t = 0 the plate
y = 0 is suddenly jerked into motion in the z-direction with constant speed U. It is natural to
look for time-dependent unidirectional flow w = u(y,t)e; similar to the parallel plate problem.
We assume that there is no pressure gradient between x = £o00, 7.e. the flow is only due to
the motion of the plate. Define the kinematic viscosity v = u/p, the z-component of the
momentum equation reduce to the classical one-dimensional diffusion equation

Ou = vy, (3.2.1)
with initial condition u(y,0) = 0 for y > 0 and boundary conditions
uw(0,t) =U and wu(oo,t) =0 fort>0.

We employ a technique, called similarity transformation, to solve the problem, but
before that let us explain why this technique is applicable here. Observe that there is no obvious
length scale /. if we attempt to non-dimensionalise the problem but the solution depends on
time. It is then necessary to construct both the length and time scale using the independent
variables y,t and parameters v,U. These constructions are not “guessed”’, rather they are
derived from the scaling of the governing equations. Indeed, a dimensional analysis on the
governing equation yields

v. v (g) — y ~ V1t
t y?

Instead, we invoke a common approach from the theory of linear PDEs, where one looks for
symmetry transformation (scale invariance) of the problem, that is, a dilation transformation
of the form

Y=y = ay, t»—>f:a6t,

such that the governing equation for u(g,t) does not change. Chain rule gives

g 0 g 50
a—y—aa—g and a—a 5
and the equation for u(,t) is
a’Opu = va®Ogu.
Consequently, if u(y,t) is a solution of (3.2.1), then u(ay, at) is also a solution of (3.2.1) for
any constant a € R. More generally,
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If a given PDE in u(y, t) has a symmetry transformation
(y,t) — (ay, a’t) for some 3, then a solution of the PDE is
given by u = f(n), where n = y/t'/?.

f is called the similarity transformation and 7 the similarity variable. To this end, let
n = y/+/t and assume that u = f(n) for some function f. Then

o= f'm)dm = ') (~357) =~ (35)
Oyu = f'(m0yn = f'(n) (i>

Vit
Oyt = 0y(Oyu) = f"(n) (%)
and so the governing equation (3.2.1) becomes
— f'(n) (2%) =v (f in)) = f"(n) + <%> f'(n) =0. (3.2.2)

The boundary conditions are

U=u(0,t) = f(n)ly=0 = f(0)
0 =u(o0,t) = f(n)|y:oo = f(o0).

Note that the condition f(co) = 0 coincides with the initial condition as well. Define g(n) =
F'(n), then (3.2.2) becomes

n
g+ (55) 9tn) = 0. (3.23)
The method of integrating factor can be used to solve (3.2.3) and its the general solution

g(n) = Be™" /.

Consequently,
n
fln)=A+ B/ e ds.
0

The boundary condition f(0) = U gives A = U, and the far field boundary condition implies
0=A+ B/ e 5/ s
0

— U+2ﬁB/ e dr
0

=U++/mvB
U
— B=— .
TV
Hence, the solution of the problem is
1

u=f(n)=U {1 — /On e/ ds] . where n = y/Vt. (3.2.4)

N
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Another choice of similarity variable, which is motivated by scaling law, is n = y//nt which is
now dimensionless. A scaling argument on (3.2.4) shows that

1 [
u=U [1 - —/ e/ ds] ,  where n =y/Vit. (3.2.5)
V7 Jo

These two solutions are the same, but the latter is preferrable since the similarty variable
n = y/+/nt is dimensionless.

Remark 3.2.1. There are necessary conditions for the existence of similarity solution:

1. The similarity variable n may depends on the parameters and independent variables, but
the original PDE for v must reduce to an ODE for f as a function of 7 only.

2. The original initial and boundary conditions must reduce to the appropriate number and
type of conditions on F', so that this is consistent with the order of ODE for f.

It should be noted that the simple form of the initial and boundary conditions was essential
to the success of the method. Let us interpret the solution (3.2.5). At any two different times
t1, 1o, the velocity u is the same function of y/v/vt. What happens is that the velocity profile
becomes stretched out as time flows.

3.2.2 Finite domain - constant speed

Consider the same configuration as in the previous subsection, but on a finite domain 0 < y < d.
The problem remains the same, the only difference being we replace the far-field condition with
the no-slip condition on the top plate y = d:

Ou=vouu for0<y<d (3.2.6a)
u(y,0) =0 forO0<y<d (3.2.6b)
u(0,t) =U fort>0 (3.2.6¢)
u(d,t) =0 fort¢>0. (3.2.6d)

Since the dimensional parameter d enters the problem, y/v/vt is no longer the only dimen-
sionless combination of the available parameters, and we have no grounds for anticipating a
similarity solution.

Separation of variables is not applicable at first sight since the bottom boundary condition
is not homogeneous. A general technique to resolve this issue is to decompose u(y,t) into its
equilibrium solution u4(y) plus some other function w(y,t), i.e.

u(y,t) = us(y) +w(y,1), (3.2.7)

We may infer from Section 3.1 that

us(y) = U (1 - %) . (3.2.8)

Substituing (3.2.7) and (3.2.9) into (3.2.6) then yields a new problem in terms of w(y,t):

Ow =voyw for0<y<d (3.2.9a)
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w(y,0) = —us(y) = =U (1 - c%) for0<y<d (3.2.9b)
w(0,t) =U —us(0) =0 fort>0 (3.2.9¢)
w(d,t) =0—us(0) =0 fort>0. (3.2.9d)

This new problem now has homogeneous boundary conditions, but the tradeoff is that the
initial condition might gets complicated.

Assuming an ansatz of the form w(y,t) = f(y)g(t), then the governing equation of (3.2.9)
becomes

! —y " g/(t) -y f//(y) —— 2
S0 = v at) — T8 = (L) — e

Solving the ODE for f(y) yields the general solution
f(y) = Acos(A\y) + Bsin(A\y).
The boundary condition f(0) =0 gives A = 0, and the other boundary condition implies

0= f(d) = Bsin(\d) => \ = %”.
Therefore iy
f(y) = By sin <T> .

On the other hand, solving the ODE for g(t) yields

2 *mlut
g(t) = Ce™ " = Cexp (_n;r—zl/) .

Hence,
2.2

w(y,t) = ;An exp <_n dQVt) sin <nT:y> ,

where the coefficients A,, are given by

e [t () 4

Finally, the solution to the original problem (3.2.6) is
_ y = [2U n’mvt\ . /nmy
u(y,t)-U(l d> ;(nﬂr)exp( 7 sm( g >

3.2.3 Oscillating plane boundary

3.3 Steady Flow Down an Inclined Plane

3.4 Taylor-Couette flow

Remark 3.4.1. Consider two rotating long concentric cylinders, and there is some fluid in
between these cylinders. This shares the same structure as the previous example, except that
we are solving the problem in cylindrical coordinate.
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3.4. Taylor-Couette flow




Chapter 4

Surface Waves

A classical model for the small transversal vibrations h(z,t) of a tightly stretched horizontal
string is the one-dimensional wave equation

hiy = 2hyy, where ¢ = —

P
T = tension force

p = linear density of the string at rest.

Consider the Fourier transform with respect to x, for each fixed ¢, of h(z,t):

N 1 o0 .
h(k,t) = \/_27/ h(z,t)e™* dx.

Applying the Fourier transform to the wave equation yields
iltt = —02]{?2;1

which has general solution ) ' '
h(k,t) = A(k)e " 4+ B(k)e'™.

We take the inverse Fourier transform to recover h(z,t):

1 *® .
h(z,t) = —— h(k,t)e™™ dk
V2T /_oo
1 o0 ) ) . .
— A k efzcktezkx_FB k ezcktezkx dk
=/ _[am (k)ettet]

— 1 - ik(x—ct) ik(z+ct)
i /_OO [A(k)e + B(k)e ] d
= F(z —ct) + G(x — ct).

The functions A(k), B(k) are known as the Fourier component which are determined by initial
and boundary conditions. Here, k is the wavenumber and it relates to the wavelength A = 27 /k.
The quantity w = ck is the temporal frequency and it relates to the period T' = 27/w. The
expression for h(x,t) represents the superposition of two travelling waves moving at constant
speed ¢ > 0 in the positive and negative x— direction respectively and these waves are not
dispersive, i.e. all disturbances travel at a constant speed.

29
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In contrast with these small amplitude waves on a taut string, water waves are disper-
sive, i.e. different Fourier components that make up a general disturbance travels at different
speeds, depending on their wavelength. Water waves problem are very different than the fixed-
boundary problems considered in Chapter 3, in the sense that the water surface, called the
free surface, is part of the boundary and it varies in time. This means that we need to solve
for both the velocity field w and the moving free surface. This belongs to a more general class
of problem known as free boundary problem.

4.1 Surface Waves on Deep Water

Let us begin with the two-dimensional water waves problem. Consider an irrotational flow of
an incompressible, inviscid fluid occupying the domain D; with infinite depth, defined by

D, = {(r,y) ER?: —o0 <z <o00,—00 <y <n(x,t)}

We assume that the mean free surface is located at y = 0 and the interface between fluid and
air, i.e. the free surface, is the graph of some unknown displacement function y = n(x,t).

Yy = U(Iat)

gravity

Figure 4.1: Surface waves on deep water.

4.1.1 Existence of velocity potential

Since the fluid is assumed to be inviscid, it follows from the two-dimensional vorticity equation

that
Dw

Dt
and the vorticity w = (0,0,w) of each fluid element remains unchanged. In particular, w = 0
since the flow is assumed to be irrotational. Consequently, there exists a function ¢(x,y,t),
called the velocity potential, such that u = V¢. We verify that ¢ satisfies the zero vorticity
condition:

=w-Vu=0

w = =
or Oy Ox0dy Oyox
The existence of velocity potential is a result from multivariable calculus:

dv_ou_ 006 909 _

Any C* vector field w on a simply-connected domain D C R?
1s conservative if and only if it 1s wrrotational on D.
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We point out that the if statement is false if U is not simply-connected. For completeness, we
prove the result in the two-dimensional case. Fix a point (z¢,yo) in D and define the function
¢(z,y,t) : D — R as the line integral

(z,y)
o,y t) = /( w(@, g, 8) de’ +o(@ g 8) dy.

0,%0)
Since path-independence of the line integral is equivalent to the vector field u being conser-
vative, it suffices to show that ¢ is path-independent. Let C7,Cs be two different paths from
(20, Y0) to (z,y). By construction, the curve C; U (—C3) encloses a region S in D. Since D is
simply-connected, we may apply Stokes’ theorem and find that

]{ udm’+vdy':j{ u-tds
Clu(—CQ) Plu(_PQ)

:/S(qu)-nds
:/S(qu)dA

:/wegdA:O
S

By virtue of the incompressibility condition the velocity potential ¢ satisfies Laplace’s equation
in Dy:
0=V -u=V-(Vp) =A¢p.

4.1.2 Kinematic boundary condition

In the water-waves problem, water and air are two immiscible fluids since they do not mix into
each together. Let us define the free surface as the zero level set of the implicit function

F(z,y,t) =y —n(z,t).
The no-penetration boundary condition for a moving boundary is that

U - N = Umoving boundary * 7.

This condition is equivalent to the requirement that fluid particles on the free surface must
remain on the free surface, i.e. the material derivative of F' must be zero:

DF  OF

—=—+VF-u=0. 4.1.1

pt ot VO (4.1.1)
This is called the kinematic boundary condition because it only involves the flow field. Rewrit-
ing (4.1.1) using VF = n|VF|, where n is the unit outward normal (pointing in the ¢ direc-

tion), we obtain

F
O:%—t+|VF|n-u
0= 1 6F+u n
~|VF| ot

In particular, this asserts that the zero level set of F' is convected in the normal direction n
with the flow field w. Finally, computing and substituting all the derivatives of F' into (4.1.1)
yields the kinematic equation for the free surface:

n+un, =v ony=mn(zt).
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4.1.3 Dynamic boundary condition

For an irrotational flow of an ideal fluid with gravitational body force F\, = g = —g3, the
Cauchy momentum equation (see (2.7.1) in the derivation of Bernoulli streamline theorem)

reduces to 3 |
8_1: =-V (§+gy+§|u|2) ony < n(x,t) (4.1.2)

Using u = V¢ and integrating (4.1.2) with respect to & gives
P 1
Gt gyt 5IVoI* =G(#t) ony <nw.t) (4.1.3)

where G(t) is an arbitrary function of time ¢. In particular, G(¢) may be chosen arbitrarily by
absorbing a suitable function of ¢ into ¢ using the transformation

O(z,y,t) = ¢(z,y,t) — /t G(r)dr (4.1.4)

to

in which (4.1.3) reduces to
p 1 2 _
@t+;+gy+§lv¢\ =0 ony<n(x,t). (4.1.5)

This does not affect the relation of ¢ to the flow velocity since u = V¢ = V. We remark
that (4.1.3) is the Bernoulli equation for unsteady potential flow and it was used in the
derivation of Luke’s variational principle which is a Lagrangian variational description of the
free surface motion under the influence of gravity [Luk67].

Since the flow is inviscid, there are no tangential stresses and the tangential stress is balanced
at the free surface, provided we neglect the surface tension. On the other hand, since the only
normal stress exerted on the free surface is the pressure, the normal stress boundary condition
translates to no pressure jump across the free surface, i.e.

p(xﬂl(%t)_at) = Po at y:n(%t)

with po the (uniform) atmospheric pressure. By virtue of (4.1.4), evaluating (4.1.3) at y =
n(x,t) and choosing G(t) = po/p to eliminate the constant term we obtain the dynamic bound-
ary condition:

1
¢r + gn + §|V¢|2 =0 ony=n(zt).

4.1.4 Linearisation of the surface boundary condition
The two-dimensional water-waves problem, in terms of the velocity potential ¢, takes the form
Ap=0 for y < n(z,1t)
Mt dune =0y, ony=n(zt)
bubgnt5IVOP =0 ony=n(,t)

This problem is difficult to solve in general since the boundary conditions are nonlinear. As-
suming the free surface displacement n(x,t) and the fluid velocities u, v are small, in a sense
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to be made precise later. This allows us to linearise the problem by dropping quadratic (and
higher terms) of u,v,n and the two surface conditions on y = n(z,t) reduce to

nt:¢y:v
¢t +gn=0.

Expanding v(z,n,t) and ¢(x,n,t) around the mean free surface y = 0 and neglecting quadratic
(and higher terms) again, we obtain

ne(x,t) = v(z,0,t)
o(,0,t) + gn(z,t) = 0.

This allows us to rewrite the surface boundary conditions at y = n(z,t) as surface boundary
conditions on y = 0. Consequently, we obtain the linear water-waves problem:

A¢p =0 for y < n(z,t) (4.1.6a)
M= Py ony =0 (4.1.6b)
¢ +gn=20 ony = 0. (4.1.6¢)

4.1.5 Travelling wave solution
We look for sinusoidal travelling wave solution for the free surface displacement
n(x,t) = Acos(kx — wt), where A = amplitude

k = wavenumber

w = angular frequency

2

A= % = spatial wavelength
2

=" temporal period.
w

WLOG, the phase shift can be chosen to be zero by appropriately translating ¢, which is the
case here. The boundary condition (4.1.6b) and (4.1.6¢) suggest that the velocity potential
should be of the form

¢(z,y,t) = f(y) sin(kz — wt).
For this ansatz of ¢ to satisfy Laplace’s equation (4.1.6a), the function f(y) must satisfy
f'(y) = k*fy) =0 fory <n(z,1)

which has general solution
f(y) = Ce* + De™*v.

WLOG, we may take k£ > 0. Since the water is of infinite depth, we require the velocity to be
bounded as y — —oo and this is not possible unless D = 0. Thus

o(x,y,t) = Ce™sin(kx — wt).
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Substituting this, together with the ansatz of 7, into both (4.1.6b) and (4.1.6¢) and cancelling
the common sinusoidal term, we obtain

(e, 20 -l

This system has a nontrivial solution if and only if the matrix is nonsingular, that is if
w? = gk. (4.1.7)

This equation relating the frequency w and the wavenumber k£ is called the dispersion rela-
tion. It takes the form w? = g|k| if no restriction is placed on the sign of k. For any given
A > 0 the solution of the linear water-waves problem (4.1.6) is

o(z,y,t) = A—l:}eky sin(kz — wt) (4.1.8a)
n(x,t) = Acos(kx — wt) (4.1.8b)
w? = gk. (4.1.8¢)

The dynamic pressure P for the linear water-waves can be recovered from Bernoulli equation
for unsteady potential flow (4.1.5). Neglecting higher-order terms we find that

A 2
P =p+pgy=—pp = pTwe’“y cos(kz — wt)

= pgAe® cos(kx — wt).

For k£ > 0, the surface waves travel to the right with phase velocity

. :c_d:\/iz‘/@
Pk k o2

and they are dispersive since waves with different wavenumbers move at different speed. More-
over, the phase velocity is an increasing function of the wavelength A so longer waves propagates
faster.

4.1.6 Small amplitude assumption

The linear water-wave problem is obtained by assuming 7, u, v are small, but small compared to
what? The standard procedure to compare magnitudes of different terms is to nondimension-
alise, but here we take advantage of the fact that we have the explicit solution. The expression
for ¢ shows that that u and v are of the same order of magnitude. To obtain (4.1.6b), we
neglected the term un, compared with the term v. This is reasonable provided

lun,| < |v] <= |n.| K <= |Ak| <1 <= JA| < A

Thus, we require that the free surface displacement is small compared to the wavelength of the
waves and this is sometimes called the small-slope approximation. To obtain (4.1.6¢), we
neglected the term |V¢|? = u? + v? compared with the term gn. This is reasonable provided

u? + 0% < g|n| = A% < gA = Algk < gA — |Ak| < 1

and we again recover the small-slope approximation.
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4.1.7 Particle paths

From (4.1.8¢) the velocity components are

u(z,y,t) = ¢p = Awe™ cos(kx — wt)
v(z,y,t) = ¢, = Awe™ sin(kz — wt).

At a particular time ¢ > 0, a fluid particle initially at its mean position (Z,y) reaches (z,y)
and its particle velocity at that point must satisfy

dx dy
E - U(.CE, y7t) and % - U(l’,y,t)

and in principle we can integrate these to obtain the particle path. In the linear water-waves
problem, any particle deviates only a small amount from its mean position, i.e.

Since Z(t) < z(t) and g(t) < y(t), we can approximate the RHS of the ODEs as

dz i}

d—f = u(z,7,t) = Awe™ cos(kz — wt)
B e
pri v(Z,y,t) = Awe™ sin(kT — wt)

which can be easily integrated. Hence

#(t) = — A sin(kz — wt)
§(t) = Ae*¥ cos(kT — wt)

and the particle paths are circular with radius Ae*? since
B4 g = (AT)?.

In particular, the radius and the fluid velocities both decrease exponentially with the depth
and so the fluid motion is limited to the free surface of depth g = O(1/k) = O(\).

4.2 Group Velocity

As a motivating example, consider the superposition of travelling sinusoidal waves
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4.3 Surface Tension Effects: Capillary Waves

4.4 Nonlinear shallow water equations

4.4.1 Method of characteristcs
4.4.2 Dam breaking
4.4.3 Bore

4.5 Lubrication Theory

(% [(1 + sy)ur] gu@ =0

(99
pa’Q) Ao ou, N ug  Ou,
L "0y 14ey 00 (1+ 5y
P. OP 1 0 ou, e D%, g2 Ouy
= - a (1 + Ey) + - Uy
) Oy 1+eydy dy (I1+ey)? 002 (1+ey)? 1+5y 2 00

pa’\ Ouyg Ug 8u9 EUYU,
ET S Uy +
1 dy l4ey 89 1 +ey

P e 1 0P 1 0 Ouyg g2 0%uy ou,
— (14 ey) + — Ug
1Y) 1+ey 00 1+ ey dy dy (1+ey)? \ 002 1+€y260
The boundary conditions becomes u,, = 0,up = —1 at y = 0 and u, = up = 0 at y = h(0
1+ Acos(f). The Reynolds number in this case is
2Q)
Re = pa )
14

and Res < 1 since € < 1, assuming Re = O(1). Let us try a regular asymptotic expansion

u, = ud + O(e, eRe)
up = ug + O(e,£Re)
P = P" + O(e,eRe)

Collecting only O(1) terms, we get the first order lubrication equations

o, oy _,
dy 00
P.oP° 9 [0u?
O=———+—
u2 oy Oy \ Or
Pe2orP® 9%
0=-— + u

p 00 oy Y
Recall that for the concentric circle (Coutte flow), we have
uj 0P
y 9y
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1 8 8ua Ug

yoy \" 9y y
Centripetal acceleration u2/y balanced by the pressure gradient. On the lubrication ones, the
pressure gradient is balanced by the viscous term.
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4.5. Lubrication Theory




Chapter 5

Classical Aerofoil Theory

5.1 Velocity Potential and Stream Function

Given an irrotational vector field u defined on some fluid region D, we may define a potential
¢: D — R as the line integral

¢<P>=/Pu-dm,

o

where O € D is some arbitrary reference point. For simply-connected fluid region D, the
potential ¢ is independent of the path between O and P. Consequently, ¢ is a well-defined
function and we have u = V.

Example 5.1.1. Consider a rigid body rotation with angular velocity €). The flow field is
given by
u=(0,0,Q) x (z,y,2) = (—Qy, Qz,0)

and
w=Vxu=2(0,0,Q) =20 #0.

Example 5.1.2. Consider the two-dimensional irrotational vortex with € = (0,0, «/r?). Then

u — (_ay ax 0>

T_27 T_Q’
and one can verify that w = 0.

Example 5.1.3. Consider the stagnation point flow
u = (azx, —ay,0).

One can verify that w = 0 and there exists a velocity potential ¢ such that u = V¢, with

«

oz, y) = 5(1‘2 + %),

up to some additive constant.

Example 5.1.4. Consider the line vortex flow u = éeg, with ey the unit vector in polar
coordinates defined by
ey = (—sinb, cosb,0).

69
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Using the gradient operator in polar coordinates, the velocity potential ¢, if it exists, satisfies

0,6=0, Lo6=" s.6=0
T T

Up to some additive constant, we find that ¢ = kf. This doesn’t contradict the fact we
mentioned above since u is defined on R?\ {0} which is not simply-connected. For closed
curves that don’t go around the origin, the line integral is zero. But for the unit circle centered
at the origin, the line integral is
7{ u - dxr = 2rk.
c

Definition 5.1.5. For any closed, smooth, oriented, simple curve C, the circulation of u

around C'is defined as
I = 7{ u - dx.
c

If the region S enclosed by the curve C' is simply-connected, it follows from Stokes theorem

that
F://w-ndS.
s

Definition 5.1.6. A potential flow is a flow that can be represented as u = V.

If w is irrotational and incompressible, then the corresponding velocity potential ¢ must be
harmonic since

V-u=V-V=A¢=0.

For the remaining section, we are only considering two-dimensional incompressible flow.
Definition 5.1.7. A function ¢ is a stream function of u = (u,v) if
u=0,0 and v=—-0.

1 is called the stream function because it is constant along any streamlines. Note that by
construction the incompressibility condition is automatically satisfied too.

Let us try to relate the stream function and the velocity potential. Suppose u is a two-
dimensional incompressible, irrotational flow. Then there exists a velocity potential ¢ and
stream function 1 such that

U= 0,0 = 0y
U:ay¢:_ xw

These constitute the Cauchy-Riemann (CR) equation. To this end, observe that v is also
harmonic since

w = (0,0 — Oyu) e5 = B, (—0,1) — 8, (D) = —Avbes = 0.
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5.1.1 Complex analysis

A complex function f(z) = f(z + iy) is analytic if the following limit exists
Az) —
@ A ()

dz  Az50 Az

If f is analytic, then Re(f) and Im(f) satisfy the CR-equation. Conversely, if two functions
g(z,y) and h(z,y) satisfy the CR-equation and their partial derivatives are continuous, then
the function f = g + ih is analytic. In our case, if ¢, are C' functions, then there exists a
complex potential w(z) such that w(z) = ¢ + . How does the derivative of w relates to
the fluid velocity field? Choose a path along the real-axis. Then

dw . w(z+Az) —w(z)
dz T A, A
_ iy Ot Az y) + iz Axyy) — Ha,y) — (e, y)
= lim
Az—0 Az
=u— 1.

We recover the same relation if we choose a path along the imaginary-axis, in which Az = iAy.
A useful quantity is the magnitude of w’'(z) that is the flow speed:

dw 9 9
q_‘dz = |u” 4+ v%| = |ul.

Example 5.1.8. Consider the uniform flow at an angle a extended from the z-axis, defined
by
u=Ucosa and v =Usina
for some constant U > 0. Then
dw
dz

Since w is independent of z, we may integrate once and find

=u—iw=Ucosa—1iUsina =Ue "

w=Ue "z = (Ucosa —iUsina) (z +1iy) = ¢ + i1
which implies that
¢ = U cosax + U sin ay
¥ = —=Usinaz + U cos ay.
For a =0, ¢ = Uz and ¢y = Uy.
Example 5.1.9. Consider the line vortex

ri
u=—-—ey.
2T r
: . : I .
One can show that I' is the circulation. We have seen that ¢ = 2—9. The stream function
s

satisfies )
u, = —00¢ and wug = —0,,
r
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or r
Opp =0 and —0p=—.
2r
Integrating once, we find that
r
Y = o Inr.
Consequently,
r ' 1
W= o [0 —ilnr] = —;—ﬂ lnr+ 0] = —;—Wlnz

if we choose the principal branch of the complex logarithmic.

5.1.2 2/8/2018

2D incompressible irrotational flow past a rigid body. Body to be a streamline of the flow. We
don’t impose no-slip on the body.
Method of solutions:

1. Potential and stream functins
2. Method of images - Milne Thomson Circle theorem
Because the PDEs are linear, we can use superposition principle. Three steps
1. uniform flow past a cylinder
2. uniform flow past an elliptical cylinder
3. uniform flow past an aerofoil
Example 5.1.10. 1. Uniform flow at an angle . The complex potential is

w = Uze .

2. Line vortex at zg. The complex potential is

N
w(z) = ~5- In(z — 2),

where I' is the circulation around z = zg:

I'= ]{ u-y.
C(20)

I' is also called the strength. For the line vortex, u = 2—69 and so the streamlines are
r
circles.

3. Source/sink. ¢ = clnr,c € R and ¢y = . w(z) = clnz and the streamlines are
f = constant.
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4. Dipole/Doublet flow. w(z) = A/z, A € R.

Ax Ay

d(x,y) = o Y(x,y) = Y

Streamlines are 1) = constant, i.e. shifted circles along the y-axis. One can show that
UT:——2COS(9, ue:——zsinH.
r r

Let us consider the problem of finding the flow generated by a vortex a distance from the
origin on the z-axis in the half-space x > 0. Consider the free space and another line vortex
of strength —I" at * = —d. By superposition,

w(z) = wi(z) + w_(z)

i i
= —%ln(z —d) + %ln(z +d)

Al z—d
=——1In
2 z4+d

_ In 2 d + dar 2 d
- 2r z+d S\ +d
= 6(r,0) + ith(r, 0).
Consequently, the stream function is ) ( «9)——Fl “ % The streamlines are cd)
nsequently, ream function is (r, 0) = —o—In | ——|. reamlines are | ~—— | =c,

i.e. these are circles. On the imaginary axis, observe that ¥» = 0. One can check that the
normal velocity component u = 0 on the boundary (the wall). What if the boundary is curved?

Theorem 5.1.11 (Milne-Thompson’s Circle Theorem). Let f(z) be a complex function. Sup-
pose that all singularities of f(z) lie in |z| > a. Then the function

wuw:ﬂ@+f(§)

is the complex potential of a flow with
1. the same singularities as f in |z| > a

2. |z| = a is a streamline of w(z).

2 2
Proof. The singularities of f (T) are in |[—| > a, i.e. in |z| < a. On the circle |z| = a,
z
observe that
a>  a’z  a*z
—_———— = — =
z z)? a?

z
This means that the complex function w(z) restricted to the circle |z| = a is

|z|=a

In particular, the imaginary part which is the streamline is zero at the circle |z| = a. |
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Let us consider the uniform flow past a cylinder with radius a > 0. In the absence of the
cylinder, the flow is uniform and the complex potential is f(z) = Uz and the only singularity
is at z = oo (essential)? By the circle theorem,

U2
:Uz+—a
z

has the same singularities outside the circle and |z| = a is a streamline. We claim that the
circulation of the corresponding flow around the cylinder is 0. Let’s work in polar coordinates.

2
w(r,0) = Ure™ + U—ae_w
r

a? a?
=U <rcosé’+m’sin9+ —cosf — —isin&)

= ¢(r,0) + ip(r, 0)

2 2

which gives ¢(r,0) = U cosf (7’ + %) and v(r,0) = Usinf (r — a7) The velocity compo-

nents are
2
U, = lﬁgw = 0,¢ = U cos <1 — a_2>
r r
1 . a?
ug = Opp = —Ogp = —Usinf ( 1+ —
r r

The circulation around a circle v = Re, is

21
P fuy= [ ul)-ias
C 0
21
:/ (UTGT—FUQGQ)
0
21
:/ U R df
0 r=R
CL2 2
:—U(1~|——2>R/ sinfdf =0
r 0

Let us discuss about boundary conditions on the circle |z| = a. We know by construction
that ¢ = 0 on the circle. Moreover

. Reg df

r=R

10) =2U cos®, u,

r=a

:O, Ug

r=a

— —2Usinf # 0.

r=a

The second one is no penetration, and the last one is the slip condition. There are two

stagnation points at # = 0,7 in which uy = 0 on the circle. Otherwise, there is slip on the
body.
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Now, let’s impose the additional constraint that we want nonzero circulation around the
cylinder. By superposition principle, we add a vortex of strength I' at the origin. The corre-
sponding complex potential is

2 T
w(z) =U (z—l— a_> N
z 2m

Computing w'(z) gives

w'(z)zU(1_“—2) _ Al

z? 21 z
and as |z| — 0o, w'(z) — U. Let us find the velocity potential and stream function.
a’ a? > il il

w(r,d) =U (rcose—i-irsin@—l——cos&—i—sin@ — —Inr— —if
2m 2m

which implies

2
r
o(r,0) = U cos b (T+ a_2) + —0
r 2m
2
r
Y(r,0) = —Usinf (7’ — a_) — —Inr.
r 2m
The cylinder remains a streamline since
Y =5 Ina.
r=a T

To obtain ¥ = 0 on the cylinder, we substract the corresponding constant from the contribution
of stream function in w(z)

2 38 I
w(z)=U (z+a—) izt S e

z 2 2
2 F

:U(M_) ~ T (3).
z 2T a

Let z = re” and define the dimensionless variable 7 = r/a and Z: z/a = 7¢®. Then

) 2 1 )
w(z)=U <r6w + a—e‘”) ~ (Cew)
T

2 a
~ 10 —1i0 ~ 10
:Ua(re +;e )—%ln(m )

. 1 . 1B .
=Ua [<f€’9 + ;6_19 — Q;Ua In (few))]

1
=Ua <2+¢—z’Bln£)
z

Consider

1
W(3)=%+-—iBln3
z
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1 ,
= Fcosf + i sing + - cos® — —sinfd — i3 (In7 +10) .
T T

We have that

~ 1
W(r,0) = <f - :> sinf — Bln7
T
- o1
o(r,0) = <r + :) cos 0 + B.
T
Let us look at the stagnation point:
dw 1 1
—=1——=—1B==0.
dz EA

If B < 2, then the stagnation points are at 7 = 1 and sinf = —B/2. If B > 2, then the

stagnation points are 7 = g + \/%2 —1land 6 = 3?”

5.2 Lift

We claim that there is lift if I' # 0, i.e. the force perpendicular to the U direction, F, # 0.
The lift is —pUT".

Theorem 5.2.1 (Kutta-Joukowski lift theorem). Consider the steady, irrotational ,incom-
pressible flow past a 2D rigid body, the cross section of which is bounded by a simple curve C.
Let the flow be uniform at infinity with speed U in the x-direction and I the circulation around
the body. Then

F,=0 and F, = —pUT

where F' = (F,, F,) is the force on the body.

Theorem 5.2.2 (Blasius). If F,, F, are the components of the net force on the body, then

7 dw\ >
Fm—iFy:%j{C(E) dz,

where w(z) is the complex potential.

Proof. Recall the (steady) Bernoulli’s principle with no external force

gl +2=c
Choosing C' = py/p, then

pP=po— §IUI2
Note that

dw|*>  dwdw  dw d

T dzdr dzdz

Fx:% —pdy and Fy:%pdx.
C C

We claim that
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Assuming this,

2
(dy + idx)

2
(—idy + dx)

1 dw
F,—iF, = - —
"y ijgc‘dz

_pi dw
N 2 C dz

pi [ dwdw _
— ¢ ———dz

2 CdZ dz

For the cylinder with lift,

z 27
and
dw a? ir
—=U(1-—=) — —
dz ( 22) 21z
dw\ 02 (1 a?\* T2 2TU . a?
dz ) 22 422 2z 22
e 20%a? n U?a* r? ilU  ilUd?
N 22 24 4222 Tz 22
Since

j{ n 0 if n#£ —1,
2"dz =
C 271 ifn=1.

where C' is a circle of radius a, then

1 TU
Ef—MLZ§M{—L—QM}:pﬁU.
s

Note that F}, = —pI'U > 0if I' < 0.

5.3 Conformal map

Definition 5.3.1. A Mobius transform is the transformation

az+0b
pu— i h i
S(z) -t d with ad — be # 0

Define the Joukowsky transformation as the following conformal mapping:

2

ﬂd:§:z+%,c€R

Facts about Joukowsky transformation:
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1. The inverse transform is

The branch points are at +£2¢. We pick the branch cut connecting z = —2¢ and z = 2c.
2. J(£c) =0, J"(£c) # 0.

Example 5.3.2. Find the image of z = ae”?,0 < ¢ < a under J(z). This is an ellipse.

5.4 Thermal Instabilities

5.4.1 Benard convection

We begin with the Boussinesq’s approximation. Because the temperature is not constant, so
is the density. As a result, both the density and pressure are now functions of temperature,
i.e. p=p(T) and p = p(T). Recall the system of conservation equations for a Newtonian fluid
with non-constant p = p(x):

p(@tu +u- Vu) =—-Vp+pg + pAu+ Vi - (Vu + VuT)
1
—<8tp—|—u~Vp> +V.-u=0
p
The temperature equation takes the form
p0p<atT tu- VT) =V (kVT), k=k(z).

where the second and third terms correspond to convection and diffusion. The distinction
with the usual case is that p, i, k, C,, are now functions of T'. Let p, fi, k, Cp,,T" be the ambient
constants. The Boussinesq approximation is as follows. Suppose AT =T — T is “small” such
that

le—l—aAT
P

B _148AT
K

k

Y14 4AT
o7

G

P 14 §AT
c, =7

with oAT, BAT,yAT, AT < 1. We may approximate p, i1, k, C), using geometric series. For
instance,

= {raxg < (1 - aaT)
— ~pll—aAT).
p 1+ aAT p @

In the Boussinesq approximation, the conversation of mass equation yields the incompressibility
condition V - u = 0. The conservation of temperature equation yields

oC, (atT - VT) — V2T,
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k
We may define k = = Let p = py + pp, where py is the hydrostatic pressure satisfying
PLp

0=—Vpu + pg.

Consequently,
p(1 — aAT)g — Ap = —paATg — Vpp

and the conservation of linear momentum equation reduces to (again, assuming all the four
quantities above are small)

ﬁ(@tu +u- Vu) = —Vpp + iV3u.

This is too perfect, in the sense that we lose the assumption that the fluid is convected by the
thermal gradient. The second part of the Boussinesq’s approximation is to keep the buoyancy
term —paATg. As a consequence,

ﬁ(@tu +u- Vu) = —aATpg — Vpp + iV3u.
All the reduced equations are still nonlinear, so we are going to linearise them around the base
(ambient) state.
5.5 Vortex Dynamics

Theorem 5.5.1 (Kelvin’s Circulation Theorem). Let an inviscid, incompressible fluid with
constant density be in motion in the presence of a conservative body force f = —Vx per unit
mass. Let C(t) be a closed material curve consisting of the same fluid particles as time proceeds.

The circulation
I'= / u- dx
C(t)

around C(t) is independent of time, i.e. T'(t) = T'(0) for all t > 0.

Proof. We parameterise C(t) as

Then
= 01 %1: . &c@(i J ds + /Olu(:c(s,t),t) : —8u(wéz, 0, 1) ds

' Du Ox(s,t) 10
- [ e 2zl g / 5o {ul@(s1).0) - ul@(s0),0} ds.

The second integral vanishes since C'(¢) is a closed curve. Rewriting the material derivative of
u using Euler equation, we see that

d e D ox(s,t)
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C(t) P

since we are integrating a conservative vector field over a closed curve.

Remark 5.5.2. The theorem does not require the fluid region to be simply connected. The
Euler equation enters the proof in evaluating the line integral around C', so the theorem con-
tinues to hold even if the viscous effect happens to be important elsewhere in the flow.

Definition 5.5.3. A vortex line is a curve which is everywhere tangent to the vorticity
w(ax,t). The vortex line which pass through some simple closed curve in space are said to form
the boundary of a vortex tube.

Theorem 5.5.4 (Helmholtz). Suppose an inviscid, incompressible fluid moves in the pressure
of body force f = —Vx per unit mass. Then

1. The fluid particles which lie on a vortex line at some time continue to lie on a vortex
line as time advances, i.e. vortex lines move with the fluid. An immediate consequence
is that vortex tubes move with the fluid.

F:/w-ndS
s

1s the same for all cross-sections S of a vortexr tube and is also independent of time. I is
called the strength of the vortex tube.

2. The quantity

Proof. Let us define a vorter surface as a surface such that w is everywhere tangent to the
surface. Suppose that at ¢ = 0, the vortext line is the intersection of two vortex surfaces Sy
and Sy. On each of these surfaces,

w(x,0) -n; =0 where n; is normal to S;, i=1,2.

We claim that both S, Sy remain as vortex surfaces as time advances, i.e. as the points on
S; move with the fluid, the surface they comprise at any time t is a vortex surface. Choose
any arbitrary closed material curve C(t) that encloses a surface S;(t) C S;(¢). It follows from

Stokes theorem that
/ u~dw—/ w-ndS =0.
C1(0) S1(0)

This quantity remains zero by virtue of Kelvin’s circulation theorem. Since C(t) and so S§(t)
was arbitrary, this shows that w -mny; = 0 on S;(f) and an identical argument shows that
w - ny =0 on Sy(t).

We proceed to prove the second statement. Consider any two arbitrary cross sections Aq, Ay
of a vortex tube and consider the vortex tube bounded by these two cross sections. Since u is
incompressible,

Viw=V-(V-u)=0

and it follows from the divergence theorem that

O:/V-wdaf::/ w-ndS:/ w-ndsS.
\%4 ov A1UAo
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Let C(t) be a closed material curve which lie on the wall of the vortex tube, enclosing a closed
region A(t). Then

/A(t)w(az,t) -n(x,t)dS :/ u(x,t) - de.

C(t)

It follows from Kelvin’s circulation theorem that I" remains constant as time proceeds.

Another statement of Helmholtz is that a parcel of fluid that is initially irrotationaly remains
irrotational at later times. Recall the vorticity equation

Dw

— =w: - Vu+rAw.

Dt
If w(z,0) =0, then w(x,t) =0 for all ¢ > 0. In particular, the vorticity equation doesn’t tell
us how the vorticity is generated. At this point, it seems conceivable that the vorticity can be
generated at no-slip boundary. To this end, consider the Rayleigh problem (impulsively moved
plane with speed U). We found a similarity solution

1
VTV

0
u(y,t) =U [1 — / e ds] ., where n = y/Vt.
0

The vorticity is

U 2
w(y,t) = —0,u(y,t) = e v/t
(y,1) yu(y, t) N
See Acheson, page 37 and 38 for a discussion of this.
Now, suppose at ¢ = 0 we have an aerofoil that moves to the left with speed U. By virtue
of the vorticity equation and Kelvin’s circulation theorem, the circulation around the aerofoil re-
mains zero for later time. This implies that to generate lift.............. e

5.5.1 Helmholtz Decomposition

Given the vorticity w, can we find a unique velocity field w such that w =V x u? As stated,
if w; is a solution to this problem, then w; + V¢ is also a solution for any scalar function ¢,
since

w=Vx(u+Ved)=Vxu +VxVod=V X u.

So the solution is unique up to addition of potential flow. Suppose w(x) is smooth and decays
sufficiently fast as |&| — 00. Since the voriticity equation was derived under the assumption
that w is incompressible, we modify our problem: Given w, find w such that w =V x u and
V -u = 0. Again, suppose u; is a solution to this problem and consider u, = u; + Vo. It
follows that for us to be a solution again, we need A¢ = 0. If ¢ is bounded, then it is constant
so that V¢ = 0. Hence the solution to this modified problem, if it exists, must be unique.
Suppose we have such a u, then

Vxw=Vx(Vxu)
=V (Vxu)—Au
= —Au.
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This is the standard Poisson problem with data V x w, with solution

1
wo b Vy X w(y) dy.
AT Jps |z — y|

Let us manipulate this. Looking at the ith component,

1 Ei ké? WL
ui(y) / Sk

T dr B [T — Y

47" Jgs |2 — y| Dy,
1 / 0 ( 1 ) p
=——¢egk | 7 wi, dy
47 Jes 0y; \ |z — vy
1 Tj —Yj
— ey | W4
A Jk/Ra @ —yp Y
1 Ti—Yj
= —— [ eI
47T/R3 M =y Y
1 r—y
- 7Y ) ww(y)d
L () e

% V S . d“’] ;

)

Consequently,

u(z)

1/w(y)><(w—y)dy'

T 4 z —y?

This is somewhat related /similar to the Biot-Savart Law.
Consider an axisymmetric situation. In cylindrical coordinates,

u(r, z) = u.(r, 2)e, +u,(r, z)e,.

One can show that
w(r,z) = w(r, 2)eqp.



Chapter 6

Stokes Flow

We will study viscous dominated flow, or so called creeping. Recall the incompressible Navier-
Stokes equation:

p(Ou+u-Vu)=—Vp+ uAu
V-u=0.

Choosing the characteristic length . and velocity u., we have two options for the characteristics
time ,:

1. choose t. such that u, = £./t.;
2. choose t. such that u. # ¢./t..

The dimensionless momentum equation is

U u? U
p (t—ﬁt/u’ + g—cu’ : Vu’) = —p.Vp' + 1 (6_2> Au/

9 2
(o (v (oo

Define the dimensionless parameter

céc
Re = Plete _ Reynolds number
1
Uete
St = . = Strouhal (Stokes) number.
. HUe . . .
Choosing p. = R the dimensionless momentum equation reduces to

1
Re (g&yu’ +u - Vu') =Au' - Vyp'.

R
For Re < 1 and St =1 or Re < 1 and S_: < 1, we obtain the Stokes equation

0=-Vp+Au
V-u=0.

83
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For Re < 1 only, we obtain the unsteady Stokes equation

Re

V-u=0.
For the Stokes equation, the time factor only enters through the boundary conditions. One

important consequence is that Stokes flow is reversible (in time and in space)! Also, in Stokes
flow, the sphere stays at a constant distance from the wall.

Theorem 6.0.1 (Lorentz Reciprocal Identity). Let (ul,g 1), (ug,sigma2> be two solutions

of Stokes flow outside a body with boundary S. Assume that wi,us — 0 as |x| — oo and
u, =uy=U on S. Then

/u1~g2ndS:/u2~g1ndS
s - s -

V- <u1g2 — u2g1> =0.

or

Proof. From product rule,

where the last term vanishes due to incompressibility of us. A symmetric argument shows that
u1,i0;02,45 = 05 (u1,02,45) — pOjur; (Ojun + Oiunj) - (6.0.1)
Substracting these two equations results in

Uz,;0j01 45 — u1,;0;02,;
= 05 (ug,i01,ij — U1,i02,i;) — 1 (Oju1,:05u1 3 + OjuziOu j — Ojur iOjus; — Djun iOius ;)

= 53' (u27i01,ij - ul,i02,ij) .

In tensor notation, we have

V-<u2-gl—u1-22>:u2v-g —ulv-g =0,

1 2

since V - g, = 0,7 = 1,2 is just the Stokes equation. The statement follows. |

Theorem 6.0.2. There ezists a unique solution to Stokes flow in a volume V with boundary

S.
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Proof. Assume that v, vy are two distinct solutions of Stokes equation. Linearity implies that
u = v — vy is also a solution of Stokes equation and moreover w = 0 on S.

O:/uv'ng:/u-(Vp—,uAu) av
1% v
= / V- (pU) — pV U — ,u(’?] (ulajuz) +u (8ju,~)2 dV
v
= / [w;p — pu;05u;l nj dS + u/ (0;0:)° AV
S 1%
v

This implies tht d;u; = 0 in V' and so u = 0 due to the boundary condition. |

The simplest non-trivial solution of Stokes flow is v = U and p = constant. Taking the
divergence of Stokes equation, we see that the pressure function is harmonic since

0=-Vp+ AV - -u=—-Vp.
Taking the curl of Stokes equation, we see that
0=-VxVp+AV X u = Aw.

Last, if u = V¢, then A%p = 0. We are interested in solving Stokes flow past a sphere or
axisymmetric bodies. We will solve the 2D Stokes flow using stream function, this also involves
finding the fundamental solutions of Stokes flow. We point out the Stokes paradox: we cannot
solve the Stokes flow past a disk (2D) or Stokes flow past an infinite-long cylinder.

6.1 Stream Function

A two-dimensional flow field w = (u, v, w) can be rewrite in terms of the stream function, as
u=Vy xe,= (00, —0,4,0).

One can easily check that w given by this is indeed incompressible. Recall the Stokes equation

0=—-Vp+ pAu.

Taking the curl of this, one can show that
Aw = A (—Ay) = =A%) =0,

where the vorticity is given by w = we,. We solve it in terms of a system:

A =—w
Aw = 0.

Converting to polar coordinates, we have

1 1
—87« (T&Jb) + —28991D = —Ww
r r
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1 1
;& (royw) + T—zc%gw = 0.

Using the method of separation of variables, let w = R(r)F(0) and ¢ = S(r)H(#). The
solutions are

w = (ag + bob) (co + doInr) + Z (an co8(Anf) + by sin(A,0)) (cor ™ + dyr™)

n=1
A 1
W = (ag + bob) (co +dolnr + égr? + dyr? (lnr — 5))

+ (ay sin @ + by cos 0) <017“ +dyr 4 ér® + dyrln 7’)

+ Z (an sin(\,0) + by, cos(A,0)) (cnr)‘" T R S e S dAnTQ—,\n>

n=2

6.1.1 Corner flow

Consider the flow past a wedge. The boundary conditions are

u=U, up=0 atf=0

u=upg=0 atb =«

In polar coordinates
ue = 2000, g =~ 0,0
At 0 = 0, we have
%S(T‘)H,(O) =U forallr.

In particular, this implies that @ must be constant and so we modify our ansatz for ¢ as

¥(r,0) = rH (). Substituting into Ay = w yields

O (rH) + % (rH") = —R(r)F ()

Y+ vy = —R()FO)

r

1

which implies that R(r) = —= and F(0) = H(0)+ H"(0), i.e. w= —X (H + H"). Substituting
r

this into Aw = 0 yields

Let 0(0) = H(0) + H"(#). Then the above reduces to

a(0) 4+ a"(0) =0
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with general solutions of the form
o(6) = ay cosf + by siné.

Consequently,
H(0)+ H"(0) = aj cosf + by sinf

and its general solution is
H(0) = Aysinf + By cosf + C10sin 0 + D16 cos 6.
The boundary conditions for H(6) are H'(0) = U, H(0) =0, H' (o) =0 and H(a) = 0:

H(0)=A+D,=U

H(0)=B;=0

H'(a) = (A1 + Dy) cosa+ C (sina + acos o) — Diasina
= (A1 4+ Dy)cosa+ Cysina+ a (Cy cosa — Dy sina)
=Ucosa+ Cysina+ «a(C) cosa — Dy sina)

H(a) = Aysina + Ciasina + Dyacos «
= (U — Dy)sina+ Ciasina + Dijacosa =0

The solution to this linear system is

Ble
U (o — sinacos )
Olz )
sin“ o — o
Usin® a
D1: . 9
sin® o — «v
Ua?
A= — .
sin“ o — «

It can be shown that the shear stress along § = 0 is

20U i 1, .
=—|—-———) - (sinacosa — )
6=0

Tro .
Sln” o — T

and this has a singularity at r = 0.

6.1.2 3D axisymmetric

Define the differential operator
2 1—n
E* =0, + (—2> Oyy,  Where 17 = cos 6.
r

Then E*) = 0, where v = ¢(r,n,¢), —1 <n <1 and

1 1 1
Uy = —ﬁ&]lp and Uy = _\/1—_7772;87’w
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We are still solving it using separation of variables, but we need to use Gegenbauer polynomial

Q),, defined by

where P,(z) is Legendre polynomial. For example,

Ql(n)zl(nz—l), Q2(n) = 1(77 —1).

2
We may recover the solution for the sphere and also obtain the solution for an ellipsoid.

6.1.3 Stokes stream function for 3D axisymmetric problem
Consider a curvilinear coordinate system (qi, g2, g3) with scale factors hq, ho, hs such that

1 1 12,
12 (dgs)* + 72 (dgs)” = (dg;)” .

J

= L (dg)?+

(ds)?
ht

[This is the metric tensor, we are using Leal’s notation here, wolfram alpha defines hq, hs, h3 as
the inverse of Leal]. For example, hy = 1, hy = h3 = @ are the scale factors for spherical
coordinates. Let

u = (h2h33qgwa _h1h38q1w7 0)

where e, is the axis of symmetry. One can show that
1. u-Vy=0.
2. 1) is constant on the stream tube.

3. 1 satisfies E*) = 0, where

hih hih hoh
2 1h1l2 1743 213
E” = h3 |:8Q1 ( h2 a‘h) + 8q2 ( hfl aQQ):| .

Observe that E? # V2 in (q1, g2, q3) coordinates, but they are equal in the case of hy = 1
(or 2D flow?).

Example 6.1.1. Consider the spherical coordinate (q1,q2,q3) = (r,0, ¢), where hy = 1, hy =

%’h3 rsm@ Then
Ur = 72 sm&aew(r 9)
1
= = 0,6(1. )
U¢ = 0
and

E2 = 6” + sin 4989 ( 1 89) .

r2sinf

The spherical Laplacian takes the form

V2 = %&n (TQ&) 69 (SlIl 9(99)

7“2 sin @
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Example 6.1.2. Consider the coordinate (q1,¢2,q3) = (r,n,¢), where n = cosf € [—1,1].
Then

1
Uy = ﬁ(‘%ﬂb
1
Uy = — 8rw
! ry/1—n?
’LL¢ =0
and .
=0 + — 77 0.

Example 6.1.3. Consider the cylindrical coordinates (q1,go,q3) = (r, 2, ¢). Then

1
Up = —— zd)
r
1
U, = — rw-
r
6.1.4 Flow past a sphere
The Stokes stream function is
1
Ur = r? sin@aew’ o = _r81n0 0r.

The no-slip and no-penetration boundary conditions at the surface r = a are
U =ug =0 = gt = 0,9 = 0.

The boundary condition at infinity is that w — Ue, as r — oo, which implies that u, ~
Ucosf and ug ~ —Usinf as r — oo. This suggests that 9yt ~ U cos@sinOr? and 0,1 ~
U sin? Or, or

WY~ %UrzstH as r — 00.
With this in mind, we guess an ansatz of the form
U(r,0) = f(r)sin® 0
with f(r) ~ 3Ur? as r — co. Substitute into E?t yields

sin 6

E*) = f"(r)sin® 0 + —

1 :
<m2f(r) sin 6 cos 9)

5 2f(r) (—sinb)
2]}2 )} sin? 6.

sin 9

= f"(r)sin® 0 +

- |7 -

Applying E? onto E*) we find that

E*y = {f”(r) — 2];(27’)] in?6 + Smeag ( ,1 [f” — i—ﬂ 281H96039>

sin
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_ {{f”(r) - ZJ;(;")}”—% { " i—f”smw ~0.

Since this must be true for any ¢, we obtain an ODE for f(r)
4

r2

(%—%)Qfm — 0.

This is a Cauchy-Euler equation so we guess an ansatz of the form f(r) = r®. The general
solution is

Fr) = S 0) + )~ () =0,

or in a more compact form

f(r)= é + Br + Cr? + Dr?.
r

By virtue of the asymptotic behaviour of f(r) for large r, we must set D = 0 and C' = U/2
and so

A 1
=2 4 Bry iU
f(r) r+ 7’+2 r

At r = a,

op = f'(r)sin’0| =0 = f'(a) =0

r=a

Ogtp = f(r)2sin6 cos =0 = f(a)=0.

This yields two equations for A, B:
A 1
0=—+ Ba+ -Ud?
a 2
A
O - ——2 + B + Ua
a

Ua? 3aU

which has solution A = e and B = 1 Finally, the Stokes stream function is

3
W(r,0) = % (a7 — 3ar + 2r2) sin? @

and the velocity field is

U 33 U 33
u(r,f) = <50036’(%—7a+2) ,—Zsiné’(—j—g—7a+4) ,0).

If we can find p(r, ), then the stress tensor can be found easily. We are also interested in finding
the traction force in the z-direction on the sphere and it can be shown that F, = 6mrpualU. This
is called the Stokes drag law. Let £, = t - e, be the z-component of the traction force at any
point on the surface of the sphere. The traction vector ist = o -n = o - e,, where ¢ is the
stress tensor on the surface. In terms of spherical coordinates, B B

g = Orr€r€;p + orpereq + Orp€r€y
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+ ogrege, + ogg€geq + 0gp€pey
+ Opr€p€r + 049€p€y + 0pp€p€ 4.

Consequently,
g€, = 0p€,.+ 0gr€p + O¢pr€gp-

We also know that oy, = 0,9 and o4, = 0,4. Recall that the Newtonian stress is
0 =—pL+2uE.

From the expression for 1 (r, 6), we see that

We have yet to determine the pressure p. From the Stokes equation in spherical coordinates
(whatttt?),

H 2
Orp = Oy (E
r2singd ( ¢)
1 P
—Ogp = — O, (E*1)) .
op rsin 6 ( w)
5 3Uasin? 0 . . .
One can show that £y = o [check] and it follows from integrating the system of PDE
r
for p that [check]
3ulUa
p(r,0) = Poo — 5,z Cos 0.

We know that 0,4 = 0. Referring to the textbook [Acheson/Leal/Batchelor] for the expression
of g in spherical coordinates,

Opr . = (—p+ 2u0,u,) _ = —Doo + §“T_2a cos
3ulU
0o = <,ur@ <%> + H@g%) ‘ N el NY)
r=a r r r=a a
Because e, = (sinf cos¢,sinfsin¢,cosf) and ey = (cosfcosp,sin¢cosf, —sinf), we can

finally find ¢, and integrating this yields the force in the z-direction:

2w ™
F, = / / t,a?sin 0 dfd¢
o Jo

27 T
= / / (0 cOs O — g 5in 0) a* sin O dOd¢
o Jo
= 6mpal = U,

where 7 is the drag coefficient.

Note that E*) = 0 can be viewed as the zeroth-order equation for the asymptotic prob-
lem (Navier-Stokes equation), with Reynolds number Re being the small parameter. To get
solutions where the convection term (w - V) u can’t be neglected,
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1. Oseen/Faxen Law (fundamental solutions);see Pozrikidis’s book (singular xxxxxxxx)

2. Matched asymptotics (Proudman and Pearson 1957); see Acheson p. 227-228 (Chapter
7).

2 3 3

W(r,0) = TZ sin? @ {2 + ZRe (1 —cosf) — ;]

and the drag coefficient is

v = b6mua <1 + 2Re> .

6.2 Solutions via Green’s Function
Instead of solving the Stokes equation, we solve the following problem

—Vp + pAu = —go (x — xo) (6.2.1)
V-u=0

where the RHS corresponds to a pulse/source at € = x. Let & = & — x(. Recall that

. 1 1 .
d(z) = —EVQ (;), r=|x|.

This can be proved using Fourier transform or we integrate over a ball with center & = x.

1
Lemma 6.2.1. The pressure satisfies p = —4—g -V (%)
T
Proof. Taking the divergence of (6.2.1) and using the identity
Vu=V(V-u)—Vx(Vxu)

yields

where we used the identity for the delta function.

Substituting the expression for p, we get
1 1 1
—V(g-V(=))+pru=LA(=
41 r 47 r
1 1 1 1
Au=—gA|-|—-—g- -
=205 (3) =0 (79 (7))
1

\Y
= _Eg. (vv _£v2) (1)
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Take the ansatz )
u = Eg . (VV —£V2) H(r),

where H(r) is a scalar function. Then

VIH - L

dr’

Applying V? on each side yields

VIH = — L2 (1> =0 (),

AT r
i.e. H is the fundamental solution of the biharmonic equation, given by H = —r/8w. Conse-
quently,
w= g (VV - IV?) (—i)
7 = 8T
1 1 1
= |27+ Zzx”
8 (7":+ =i > g
1
=—39g.

87r,u:g
S is known as the Stokeslet.
Proof.

1

u;e; — —%giei . (8jej8kek — 5jk€j€kagg) T.
and R )
Oir = ﬁ, dile — @o| = —(xl — xo,i)'
r 2|z — x|
]
Similarly,

6.3 Boundary integral and singularity methods for lin-
earised viscous flow

See the book with title above by C. Pozrikidis. Let us consider the forced incompressible Stokes

equation
~Vp+ pViu = —gé(z — ),
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where g is the strength of the point force located at xy. For notational convenience, we set
T =x — xo. Let Gjj (x, ) be the Green’s function. We can expression u;(x) as

1
ui(x) = %Gij (x,0) 9.
The pressure is (do not confuse p; with p)
1
p(x) = 8—ij(w Zo)g
The stress tensor is )
oi(x) = gngk(iB,mo)g
Example 6.3.1. In the free space,
Gij(®) = Sy(2) = —* + —3*, r=|2|
r r
. 22
pi(&) = —3
. 6T ;T
Ton(d) =~

Here, T%jk = —(5¢1€pj + @szg + @ZGk]

Proposition 6.3.2.
Gij (11, .’,Co) = Gji (CL‘, wo) .

Proof. Use Lorentz reciprocal theorem. |

6.3.1 Boundary integral equation

We claim that
) 1
wlen) =~ | (@)G(@)d5(@) + - [ wl@)Tu(@)m (=) dS(e)

Here, f; = oixny (surface force???), D is the boundary. Recall the Lorentz reciprocal theorem:

0
(%ck

where (u, g) and (u’ ,a ) are two solutions of Stokes flow. Let (u’ ,a ) be the solution of Stokes

(wyou — uoly,) = 0,

flow due to a point force with density g at x, (free space). Let (u, g) be a solution of Stokes
flow. We want to find u(xg). We know everything about (u’ e ) In particular,

1
u;(w) = _MGz'j (x,x0) 9j

oi(x) = - Ligh (x,20) g

Substituting this into the Lorentz reciprocal theorem yields

9,
(%ck

Integrating and applying divergence theorem, we have two possible cases:

Gij (x, o) oir(®) — pug () Ty (22, @0)] = 0
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1. If &y ¢ V, then
[ 163 (@20) (@) ()T (2 0)| ms() dS() = 0.

Here, n is the inward pointing normal of D.

2. Suppose xg € V. Let S. be the boundary of B.(xy). On D. = D\ S., we have

/ Gy (. 20) o (@) — ot (@) Tige (2, 200)] () dS () = 0.

£

In particular,
/ integrand dS(x) = —/ integrand dS(x).
D Se

Let ¢ — 0, then oy (x) — oi(xo) and u;(x) — u;(xy). To leading order in & (over
Se),

dij  TiTy
Uz'j ~ — 3

€ €
o GRidsi

The RHS becomes
0ii Ty LT
_ / {(_J + 53]) oix(x) + 6pu;(x) gé k] ng dS(x)

€

= —/Sg [(ﬁ + 53]) oir(x) + 6pu,(x) 5?’ } (?) e2dQ(x)

T2 . Tl T2
S /S { ((5ij + 5—2]) o (X) T + 6pu;(x) (;—4)} dQ2

Note that £ — 0 linearly with €. So as ¢ — 0, we have

5 + % =5, +0(1)
T — 0
azk(w) — O'ik(.’llo)
ui(x) — ui(xo)
T Ty,
oA

=0(1)

First, the second integral becomes

Also,

;25 1 .
/ Z4J dS = = TiEN; dS
9 €
€ SE
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0%;
= — ds
e3 Jy. Ox; ()
_ L[ O
19 Ve amj
=2 [ 4s
5 ), ds@
5 (4 4
:5(5”5)
A
=3 0

Finally, the RHS becomes

and

/D Gy (@, 20) o) — pa(@) Ty (, 20)] (e, ) dS ()
= —8mpu;i(xo)

which implies that

u;(xo) = _ BT Gij (x, o) oy ()0, dS(x) + 8i7r /DTijk (x, o) ui(x)ng(x) dS(x).

These are the single-layer potential and double-layer potential.

/u-ndSzO,
D

uj(:co) = —% DQi(w>Gij (x,20) dS(x),

It can be shown that if

then

!/
IR

where ¢; = f; —

Example 6.3.3. Let us consider a flow due to an immersed particle.

u;(xo) = 87TM/GJZ zo, ) f;(x) dS (),

where f;(x) is the force on S. Consider the Taylor series of G with respect to @ around .,
where @, is in the interior of S. Then This leads to slender body theory and the singularity
representation in general.

6.4 Taylor Swimming Sheet

This can be considered as a model of swimming at low Reynolds number. Consider an infinite
sheet and a wave travelling down the sheet at speed ¢ = w/k > 0. Denote the position of any
particle of the sheet by

(zs(t),ys(t)) = (z,asin(kzr — wt)) .
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Note that
1 1

B length’ ]

Let A = 27 /k be the wavelength and assume a/\ is small. The particle’s velocity is

[a] = length, [k]

time

dys
dt

= —aw cos(kx — wt).

We claim that the swimming sheet boundary condition gives rise to an oscillatory flow and a
steady flow in the z-direction, with speed U = 272 (a/\) ¢, provided a/X is small. We will
show this using a regular perturbation series.

Let ¢(x,y) be the stream function (Lagrange), satisfying the biharmonic equation V41.
The far-field boundary condition is that the flow is bounded as y — oco. The boundary
condition on the sheet is u = wug, i.e.

N _, K
oy Oz

= aw cos(kx —wt) on y = asin(kxr — wt).

A crucial observation is that the time variable only appears on the boundary condition, so we
may solve the problem at ¢ = 0 and the general solution is obtained by replacing kx by kx —wt.
Defining the dimensionless variables

ky

wa

o =kx, Y =ky, ¢ =

where we choose k/a which has dimension of 1/length? because this will simplify the dimen-
sionless equation. The dimensionless system is

(v/)4¢/ =0
Iy =0 ony = kasin(z')
D)’ = cos(z') on y = kasin(x')

where ka is the dimensionless parameter which we assume to be small. This follows from
assuming a/A to be small, since

27 a
= — = (- 1.
A k — ¢ (/\>7T<<

We may now drop all the primes to simplify notation.
Let us expand the boundary condition around y = 0:

0= 0y¥|y=o0 + YOyy¥|y=o + - .- . ..
= Oy¥|y—0 + esin(2)dyyYly—o +......
cos(z) = 0pthly—o + YOyatly—o + - . . . ..
= 0uly=0 + e8I (2)yathly=o 4. .. ..

We assume a regular perturbation series of the form

Y(x,y) ~ (T, y) + oz, y) + ... as e — 0.
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The leading-order equation is

Vi, =0 fory > 0
Oyth1 =0 ony =20
0,01 = cosx ony=0

With the given boundary condition, we guess an ansatz of the form ¢;(z,y) = f(y) sinx.

V41/J1 = (aa:xzx + ayyyy + 28a:xyy) ,QZ}1
= f(y)sinx + [ (y)sinz — 2f"(y) sinx
= [f""(y) = 2f"(y) + f(y)]sinz = 0.

The general solution for f(y) is
fly) = (A+By)e ¥ + (C+ Dy) e’
We must have C'= D = 0 in order that the velocity be bounded as y — oo and so
U (z,y) = (A+ By)e Vsinx.

Since

Oy =sinze ¥ (B — (A+ By)),
imposing the boundary conditions yield B = A and A = 1. Hence,
U(z,y) = (1 +y)e Ysinz.
The O(¢) equation is

Vi, =0 for y >0
Oyto2 +sinx0y 1y =0 ony =20
09 + sin x0y, 1 = 0 ony=0

Let us compute the required derivative of 11 and evaluate them at y = 0:
OyYn =sinx (—ye’y)
Oyyth1 = sinz (—e ¥ + ye V)
Oyat1 = cosx (—ye’y)
Consequently, the O(g) equation is

Vi, =0 fory >0
Dythy — sin*x = 0 ony =0
09 =0 ony =0

Using cos(2x) = 1 — 2sin® z, we guess an ansatz of the form ¢q(x,y) = fi(y) + f2(y) cos(2x).
The general solution for fi(y) is

fi(y) = Ay® + By* + Cy + D.
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Since we want f](y) to be bounded as y — oo, we must have A = B = 0. Because the
additive constant D has no significance, we may set D = 0 and so fi(y) = Cy. A similar
argument as above shows that the general solution of f5(y) is

foy) = (E+ Fy)e ® 4 (G + Hy) e*.

We must have G = H = 0 again to have bounded solution. Summarising altogether, we find
that
Vo1, y) = Cy + (E + Fy) e % cos(2x).

Imposing the boundary condition gives E =0, C' = 1/2 and F' = —1/2. Finally,

Uo(z,y) = Y_ Yo cos(2x).
2 2
We now prove the desired expression for the steady flow speed U. Converting back to the

dimensional variables, we find that

ky k
V(z,y) = % {(1 + ky) e M sin(kx) + ka (Ey - %ekycos@kx)) +.. }
and
wa 2 —ky o k k 2 —2k
u =0y = - —k*e "sin(kx) + ¢ s+t (—3 +k*y ) e " cos(2kx) | +......

1 1
= —wkaye ™ sin(kx) + cwa <§ + <k:y - 5) e~ 2ky cos(2kx)) +....

2 1
= —cwye " sin(kx) + % + &% (k:y — 5) e kY cos(2kx) +..... ..

The steady flow at oo is

2 E2a2 9
U:%C: ;C:2W2<ga> c.

6.5 Rigid Bodies

Consider solving the Stokes flow past a rigid body V,,, with surface S,, subject to the condition
that
u= U +Qxxz onS,

translation rotation

and
u—0 as|x|] —

Suppose the motion is purely translational, i.e. £2 = 0. Consider the force on the body

F = g-ndS
Sp

and the torque on the body

L:/s x x (o-n) dS.

P
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Since the solutions to the Stokes flow are linear, F' and L are linear in U. Consequently, we
can write F' = AU and L = CU, where A, C are the resistance matrix and é_l the mobility
matrix. The matrix C' is not symmetric by virtue of the cross-product in L.

true vector = contravariant vector (vector image)

pseudovector = gain an extra minus under reflection

It U = ey, then F; = Aj;,j =1,2,3. So A can be computed for a particular body by solving
3 translational problems. In general,

U

Q

Fl_14 L

L |C D
with A, D symmetric and B = QT. The expressions for resistance matrices can be found as
follows:

1. Solve the PDE problem with 2 = 0 and then U = 0.
2. See “Low Reynolds number hydrodynamics” by Happel and Brenner, 1973.
Example 6.5.1 (See Happel and Brenner). For a rigid body with spherical symmetry,
A=pal, D=pdl, C=B=0.

Here, a = 67r. For ellipsoid,

a” 0 0
é:,u 0 a| 0
0 0 a |

One example of rigid body with nonzero B, C' is corkscrew, flagella, helical body?

6.6 Singularity Method

[See Pozrikidis| Let’s us tackle the translating sphere problem using a different approach:
singularities approach. The problem is

—Vp+ pAu =0 in 'V,
V-ou=0 in V,
u=U on S,

u—0 as |r| — oo

We consider the list of singularities:

1. Point force: Stokeslet G = I/r + ax’ /r?, & = x — . Differentiating with respect to
gives the Doublet or point force dipole, denoted by

8Gij

GD, = :
6x07k

ijk —
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We can split this into its symmetric Gg,;s and anti-symmetric parts ng_A. Also,

D-S __ STR

where 3554
ng = 7P g the stresslet.
j 3

and o; the point source (potential, rank one tensor). The antisymmetric part is

D—A _
Gijk - r3
and we can define the rotlet/couplet GZ-C]», given by
C Ty 1 D—A
Gij = i3 T _§5kijikj

2. Point source- potential flow, with constant pressure. The irrotational solution is ® = —ﬁ

and u = sX, where X = & /73 (s is the strength). Differentiating with respect to ¢ leads
to potential dipole and quadrupole. The potential dipole is

J 0z ; r3 7o

and it induces the flow field u; = D;;d;.

We want to express u as a sum of singularities located inside the sphere. In general,
ui(x) = Gij(x, 20)g; + GZijk + s3; + D;;d; + some other singularities.
It turns out that we just need
ui(x) = Gij(x, x0)g; + Dijd;.

To satisfy the boundary conditions,

Solving gives

3
g:??TaU and d=--—U
and . . ,
1 T 3a tenl T a
—(Z7+2= V22U — bndadi Bl
“ (r:+ r3>4U (r3 37"5)4U

In particular,
See also [Blake and Chuang 1974].
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Chapter 7

Elastic instabilities of polymer
solutions

Recall the Oldroyd-B Model:

p(ut+u.vu):—Vp+nsAu+V-;p+f
V.ou=0
)\;p+;p:27]pD

where 7, is the solvent viscosity, 77, the polymer viscosity and X is the elastic relaxation time.

. : Y
Also, D is the rate of deformation tensor. The notation - refers to the upper convected Maxwell
derivative, given as

v T
T =0T —|—u'z—Vuz—(Vuz> )
—p —p —p —p —p

We adopt the convention here that (Vu);; = 0;u;. One interesting quantity is G = n,/\, the
polymer elastic modulus. Note that we can rewrite the stress tensor equation as

T =2GD - lz :
=p = \=r

Let g, =g, + G9d. Using the fact that

IISTRY|

= ~Vug — (Vud)' = 2D,

we can show that o
)\gp + g, = Gé.

The stress creation here is isotropic and g, decays with rate 1/\. Note also that V- = V- a,
Define the following dimensionless variables

u=Uu, z=Lx', t=Tt, p=Pp, gp:Eg;, f=rFf.

and U = L/T, T is a fluid time-scale. Then

T ST FTL
Re (u +u'- V') = ——V'p/ + A'u/ + ( ) Vg + <f’ ) 5
UE =P Ns

s
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V! . ul —
Opo’ +u' - Vo —V'u'o — (V’u'a')T = ar d— Za'
t =p =p =p =p = )\:

where Re = pUL/n,. We choose T such that

pFTL s
1= — T = )
Ms pFL
We choose P such that T
1=28 s po % = pFL.

TNs
We choose ¥ = G. Define the Weissenberg number Wi = A\/T" as ratio of the elastic relaxation
time over the time scale of the fluid motion. Define f = GT'/ns (contribute to the stress).
Consequently,

Re (uy +u' - V'u') = =V'p' + A'u' + gV’ - g; +f
Vi-u' =0
T
(%g’—kU’-V’g’—V’u’g’—(V’u’g’) :—,<5—0',>
=p =p =p =p W

1 = :p

Let S = g, and [ = §. Setting Re = 0, we obtain the (dimensionless) Stokes Oldroyd-B
model

0=—-Vp+Au+pV-S+f
V-u=0
S— -l (s-1

The dimensionles number [ is the relative influence of polymer stress on fluid motion. For

large Wi, we see that S “adjusts slowly”. Large  means larger elastic force. Observe that

GT AN GX

ns T ms o oms

i.e. Wif equals the ratio of polymer to solvent viscosity. In the experiment by Arratia, they

choose 1,/ns = 1/2 and in this case we are left with one dimensionless quantity Wi (This

is used in many of Becky’s simulations). The computational domain is the doubly periodic

domain [0, 27]? with periodic boundary conditions. It can be shown that the equation for S

preserves symmetric positive-definiteness of S, but what about the numerics? N
To generate stress both upward and downwards, we can modify the flow field u = ay, )

(the stagnation flow) that has hyperbolic flow. We choose f so that without polymer the
velocity is

Wis =

(o) = |

This creates hyperbolic points at background flow. One can check that the background force
is

—sinx cosy
cosrsiny|

flz,y) = {

Choose the initial condition u(x,0) = 0 and S(x,0) = L. The vorticity (in 2D) is a scalar so
it’s easier to plot.

2sin x cosy
—2coszsiny|
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7.1 Evolution of Sy;

The equation is

(Sn)T +ex (Sll)m — &Y (Sll>y + (1 — 28) 511 —1=0 (711)

We can solve using the method of characteristics:

dr

— =1 = T=s

ds

dx ex —> a(s) s

— =cx x(s) = xgpe

ds 0

d —ESs

Yy g = e

Let Sy1(s) = Sip (2(s),y(s),t). Then

dS .
%4-(1—26)811—1:0

The solution is |
Suls) =15

~ 1
+ (511(8 = 0) — 1_ 28) 6(25_1)5,

where .
511(8 = O) - Sll(l‘ﬂ)yo: 0)

The general solution can be written as

1

511(137 Y, T) = + Hll (Io, y(]) 6(26—1)3

1—2¢
1

_ oo + Hll (xefsT,yesT) 6(2671)T

with Hy; arbitrary.
Firstly, take Hyy = hqy (yeET) (gradual dependence on z) and suppose

hi1 (yegT) ~ {yeET‘q for eT > 1.

In fact, for concreteness we take
eT 2 2eT a/2
hll (y@ )Nh0<1—|—0y€ ) .

For T > 1,

Sll ~

L1+ ) e
— &€&

To obtain a time-independent expression for large €T" > 1, we choose ¢ such that

1-2
et (26—1)=0 = g= — =
g

This leads to

1
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How does Sfy behave for different values of ¢? For ¢ < 0, i.e. € > 1/2, we see that |y|? — o0
as |y| — 0 (singularity at y = 0). For 0 < ¢ < 1, i.e. 1/3 < e < 1/2, we get a cusp for |y|?,
derivative blows up as y — 0. Note that the singularity is integrable for —1 < ¢ < 0.

Recall that

~Vp+Au=—pV-5+f
1

=
=7 Wi

(&-1).

7.2 Spectral Methods

These are a subset of weighted residual methods, which also includes the finite element methods.
Suppose we are interested in x € [a, §] and we have a weighted inner product

where w(x) > 0 is called a weight function. Suppose we have a set of trial functions {¢x(z), k =
0,1,...} which are orthogonal with respect to (-, -),,. The most important examples in spectral
methods are

1. trigonometry functions e*** for periodic problems;
2. Chebyshev polynomials T (z) for nonperiodic problems.

In both cases, (¢k, ¢;)w = 0jx With appropriate weight functions (constant for trig functions,
1/4/1 — 22 for Chebyshev, check this). Consider

We consider two problems here:
1. uy(z) to approximate a given u(z), or
2. un(x) to approximate the solution u(x) of a differential equation Lu = f.

The residual Ry(z) is

for the first problem and
Ry(z) = Lun(z) — f(x)

for the second problem. The method of weighted residual makes Ry (z) zero approximately by
setting to 0 the inner products

(Ry, W / Rn(x wy(x) dz

where {U;,7 = 0,1,...} are called test functions and the weight function w,(x) need not be
the same as w(z). There are two broad classes of methods.
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1. Galerkin methods: V;(z) = ¢,(x) and w, = w. In this case,

B
0= (RN, ®j)w = / Ry (z)¢j(x)w(z) dz = 0,

«

i.e. we require the residual to be zero in the weighted L? sense.
2. Collocation methods: W;(z) = 6(z — z;), with xg, 21, ..., 2y the collocation points, and
wy(x) = 1. In this case,
B
(R W, = [ R()3(o — ) do = R (),

i.e. we require the residual to be zero on a finite set of collocation points.

Let us consider the approximation problem. Using the Galerkin approach,

un(z) =Y iy ()
k=0
Ry(z) = u(w) = ) ini(x)

We want to choose the coefficients {4y} such that

Jé] N
0= (R(a),é5(a) = | <u<x> - Zamm)) o)) da

a

N
Z(@g, i) wly = (u, i)y forall j=0,1,...,N.
k=0

Since (¢k, @j)w = Ogjck, we have that

N <u7 ¢j>w

cjﬁj:(u,¢j)w:>uj:— forallj:O,l,...,N.

(95, Pj)w
7.3 LAST DAY

Consider the viscous Burger’s equation on a 27-periodic domain

Up + UL, = Buwm
U(l’, O) = UQ(.T)

Consider the set of trigonometric trial functions ¢p(z) = e** k =0,1,....... With the inner
product

(ho) =5 [ f@atds,

we have the following orthogonality relation:

(Pr, 1) = 270
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Define the Fourier coefficient

1 27 )
Uy, = 2 ], u(x)e " dx (7.3.1)
and the Fourier series

N/2—1

Pyu(z,t) Z et (7.3.2)
k=—N/2

Sulw,t) = Y (t)e™

k=—0o0

Note that Pyu is the orthogonal projection of u onto Sy = span{¢7%, ¢f%+1v e 7¢%71}- Let
us define the index set

N N
Ky=<k ——=<k<=—-—1

N N

If u € L*(0,27), then Pyu — u in L? and

lull3 = 27 ) |
k
lu— Poull3 =2 |ig|*.

Ky

For sufficiently smooth wu,
lu = Pyulloo <Y liin.

Ky

If u is m-times continuously differentialbe with «’,u”, ..., u(™=? 27-periodic, then

R 1
il = O <W>‘

If u € C* and u plus all its derivatives are 2m-periodic, then the decay estimate holds for all
m € Z7T, i.e. the Fourier coefficient decays to 0 faster than |k|™™ for every m € Z*. This is
known as spectral convergence.

Define the Fourier nodes z; = 27j/N,j = 0,1,..., N. Define the discrete Fourier transform

N—

H

u(z;)e”* i k€ Ky. (7.3.3)

B 1
YT N
7=0

We have the orthogonality relation:

1
N 4

if p=mN,méeZ,

otherwise.

T =
S L
o
.
=
8
<.

Il
—N—
o =
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The inverse discrete Fourier transform is

u(z;) = Z et

keKn

and this is exact for all the Fourier nodes, in the sense that if

Inu(x) = Z e, (7.3.4)

then Inu(z;) = u(z;) for all j =0,1,...,N — 1. Iy can be thought of as the interpolant of u
at nodes. We point out that (7.3.3) can be viewed as approximating the integral (7.3.1) using

trapezoidal rule with nodes x1,...,xy. u; and {u,} can be related as follows:
= =
= St = & 5 (S
j=0 7=0 0
=
_ Zﬂf (N Z ez(ék):pj>
0 7=0

= Uy + Z Upymn, k€ Kn.
m=Z\{0}

Note that e!**+mN)z aliases e, i.e. they are indistinguishable about the Fourier nodes. In
terms of the inverse discrete Fourier transform,

Inu(z) = Pyu(x) + Ayu(z),
where

Anu(x) = Z Z Ugrmn | Ox(T)

keKn \mezZ\{0}

is the aliasing error in representing « in terms of a linear combination of {¢y,k € Ky}. One
can show that (u — Pyu) L Ayu

lu = Inully = llu = Pyull; + | Avull3,

i.e. the error using the interpolant is greater than the error using the truncated series. It can
also be shown that asymptotically as |k|] — oo that |[u — Pyul]z and ||Anu|s decay at the
same rate.

7.3.1 Differentiation with respect to z

For the Fourier series Su(z), its derivative is

Su(z) = Y ikige™. (7.3.5)
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This follows from the fact that differentiation and the truncated Fourier series commute, i.e.
/
[PNu(x)} = [PN(u’ (x))] (Pyu)' is called the Fourier Galerkin derivative.

On the physical space, differentiation depends on the nodal value u(z;),j =0,1,..., N —1.
We define the Fourier collocation derivative
(Dyu)(ze) = Y ape’™™ = (Iyu)'(z), (7.3.6)
keK N
where
e, ‘
ap = zkﬁ ZO u(wy)e " = ikiy,.
‘]:

Note that both these derivatives require both the forward and backward transform. Now,
observe that

N-1
1 .
(Dyu)e = [N > z'k’e““(”mf)] u; (7.3.7)

j keKN

J=
N J/
-~

Dg]'

This can be realised as the matrix product Dyu = Du, where
1 , (¢ — j)?T:| .

—(=1)"* cot | —— for ¢ ,

L 5 4]

0 for ¢ = 7.

In summary,

Dyu(x,) = Z ikie™™ = (Iyu)’

keKn

(Pyw)(ze) = Y ikige™™ = Py(u)

keKn

and they are not equal due to the aliasing error. For u ¢ Sy = span{¢y, k € Ky}, (Inu) #
In(u'). It can be shown that that the quantity Dyu — Inyu’ depends in the same on k as does
the quantity v’ — Pyu’.

7.3.2 Viscous Burgers equation

Let us approximate u by
uM(a,t) = > d(t)e™*.
keKn

In the Galerkin sense, we require
(u) +uNu) — Bul,, ¢) =0 for L € Ky

and this is equivalent to

dil " ouN )
a—: + (U/NW)]C + kzﬁuk =0 fork e ky.
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" oud 1 youv
— == —e "dx. 7.3.8
(UN Ox )k 27r/0 Y o € v ( )

In general, given f(x),g(z), we want to find the Fourier transform of the product fg, i.e.

By definition,

1 2w

(fg)k =5

=57 | J@@re e d

For f,g € Sy, we have that
I
p
T) = queiqx
q
and so
o= 3 o, [
= Z fpgq-

p+g=k

This resemblance the property that the Fourier transform of the pointwise product fg is the
convolution of the Fourier transforms of f and g.
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Chapter 8

The Generalised Newtonian Fluid

In Chapter 2 we introduced the classical constitutive law for isotropic Newtonian fluid

T= (—p+w-u)£+zﬂg,

where we assume that the stress depends linearly on the velocity gradient.

8.1 Newton’s Law of Viscosity
Recall the stress tensor of an incompressible, isotropic Newtonian fluid:

I =—pl+2uk, (8.1.1)

where p is the shear viscosity. The SI unit of the shear viscosity is kgm~'s™! or equivalently

pascal second (Pa-s), Pa being the SI derived unit of pressure. To see this, we simply equate
the dimension of terms in (8.1.1). Let M, L,T be the dimension of mass, length and time
respectively. Then

[force] ML 1 M

[g = [stress] = [area] T2 T T2 i

[velocity] L1 1

o o

= [time] TL T

and so
7] M M

W=m = o

Consider two parallel rigid plates separated by a distance d, where the bottom plate is held
stationary and the top plate is moving with velocity U. For sufficiently small U, the fluid layer
near the top plate will move parallel to it by virtue of the no-slip condition and this motion
induces the fluid layer just below it to move as well but with lower speed, due to the resisting
force generated by the friction between adjacent layers. As such, an external force is needed
to keep the top plate moving at constant speed. The magnitude F' of this force is found to be
proportional to the speed U and the area A of ech plate, and inversely proportional to their

separation d
AU
F o —.
*d
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Fluids Viscosity (Pa-s)
Air 107°
Water 1073
Ethyl Alcohol 1.2 x 1073
Mercury 1.5 x 1073
Ethylene 1.5 x 1073
Glycol 1072
Olive Oil 1071
Glycerol 1.5
Honey 10
Corn Syrup 100

Figure 8.1: Some values of viscosity of fluids, in pascal second, measured at room temperature.

This is known as Newton’s Law of Viscosity and the constant of proportionality is called
the shear viscosity of the fluid. The ratio ¥ = U/d is known as the rate of shear strain or shear
velocity and it is the derivative of the fluid speed in the direction perpendicular to the plates,
i.e. the velocity gradient. In terms of the shear stress 7 = F//A, we have the following simple
equation

This linear relationship between 7 and + is a distinct feature of a Newtonian fluid, and fluids
that do not obey such stress-shear rate are called non-Newtonian fluids. Examples of non-
Newtonian fluids are:

1. biological fluids such as blood, synovial fluid and mucus;
2. cosmetics such as lotions, shaving creams and nail polish;
3. food such as chocolate, yogurt, peanut butter and mayonaise;

4. fire fighting foams, lubricating oils, magma, sludge.

8.2 Non-Newtonian Viscosity

Plotting the stress versus the shear rate 7, we obtain a line in which the viscosity p is simply
the slope of this line;

Definition 8.2.1. A generalised Newtonian fluid (GNF) is a fluid for which the value of 7 at
a point is determined by the current state, i.e. it has no memory and independent of time.

Definition 8.2.2. A power law fluid is a fluid such that the following relation holds:

g =ry",

where o is the stress. Such equation is known as Ostwald de Waede equation. Note that if
0 < n < 1, then the fluid is shear thinning; in practice n ~ 0.3 — 0.7.
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In general, for a non-Newtonian fluid,
I = —pl + some other terms, which we will call o.

Note that tr (g) = 0 if the fluid is Newtonian and in general, we can always define g to be
traceless by absorbing the trace into the pressure term.

Example 8.2.3. Consider the pipe flow on a cylindrical pipe.

8.3 Pipe Flow

Consider a power law fluid in an axisymmetric cylinder. Assuming unidirectional flow in the
z-direction, we have u,(R) = 0. The PDE is

A 1
0= —Tp + ;GT (T’O'zr),
with boundary condition o,,(R) = 0,,. The general solution is
r AP . C
O-ZT P .
2 L r
We want bounded solutions at » = 0, which implies C' = 0. Thus,
r AP
Ozr = 53— -
2 L

Finally, applying the boundary condition, we obtain an expression for 0., in terms of o,:

The rate of strain tensor in cylindrical coordinate only has one non-zero component: FE,,. =
E... So 2E,, = O,u, = *. In this problem, 7 < 0 since the velocity decreases away from the
center line, and so

1/n
K |Ovu,|" = %aw — —O,u, = (}%aw) )

8.3.1 Coutte Flow

8.3.2 General Strategy for Solving Isothermal Flow Problems
1. Physics - always five
e Conservation of mass %Z +pV - -u=0;
e Conservation of linear momentum p (Qyu +u - Vu) = F, +V - T;
e Conservation of angular momentum T’ = gT.

Problem dependent incompressible flow p constant: V - u = 0.

2. Geometry - BC/IC, problem dependent. Geometry tells us which coordinates system to
use: Cartesian, cylindrical or spherical for instance.

BC: the most common ones are no-slip and no-penetration, usually given for u.
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3. Constitutive equation for T': It relates T to some of the other unknowns, in particular to
Vu. Note that we can have T'= —pl + ¢ with tr (g) = 0, where p might be some other
quantity other than the hydrostatic pressure (thinE of it as the Lagrange multiplier for
the incompressibility constraint); we then want to relate ¢ to some other unknowns. We
want to express ¢ as a function of £ and not Vu or F and W (anti-symmetric part of
Vu),i.e. B - - -

=f (g, higher-order derivatives of g) :

IS

All of this generates a PDE problem that is solvable in theory, but it can be difficult to solve
by hand! Let’s discuss a little bit further about f. If we have a Newtonian fluid, then ¢ = 2ul
for an incompressible flow, i.e. f is linear in £. For Bingham fluid, ¢ = o, + 2uE. Note

that implicitly we are assuming there is no time memory in the fluid, which means that the
current state E(T) only depends on 7" but not on previous times ¢ < 7. In the special case
of the steady unidirectional flow, the system of PDEs reduces to a simpler system; note that
the direction of the flow depends on the geometry and also the chosen coordinate system. The
Navier-Stokes equation becomes

0=-Vp+V-g,

together with the incompressibility condition V-u = 0 and the constitutive relation g = f (g)
For a 1D unidirectional flow, there is only one (two) non-zero component of £. For example,
if w = u(y)ey, then 2E,, = 2E,, = 0,u; if v = v(r)e,, then 2E,, = 2FE,, # 0. This implies
that o has only one (two) non-zero component(s). In other words, we have a scalar constitutive
law:
o = f(e), where e is the corresponding nonzero component of L.

This now greatly simplifies the vector equations (3 components); in fact, ¢ only shows up in
1 equation while the other equations only involve p. As a result, we obtain a first order ODE
for ¢ which may depend on p, which we can solve it explicitly most of the time. There will
be an integration constant C' and in general we do not want to solve for C' unless we can use
the fact o should not blow up. Finally, we plug ¢ into the scalar constitutive equation, which
will give a first order ODE for u because e is some derivative of u. We can solve it and use the
BC on u to eliminate the constant of integration D. (Note that now we have two integration
constants.)



Chapter 9

Linear Viscoelasticity

The goal is to write a constitutive equation for the stress. We look for fluid/solid that behaves
like a fluid in some regime and like a solid in others.

9.1 Maxwell (Viscoelastic) Fluid

9.2 Creep Test

We want to generalise the one-dimensional Maxwell model to a three-dimensional model, i.e.
tensors. We exploit the principle of frame invariance. Roughly speaking, a constitutive law
should not change under rigid body rotation.

Definition 9.2.1. Let ' = ‘;—;‘, then E’l is the deformation gradient.

blablabla
The correct quantity to use is the Finger tensor, defined by

c'=(ENE

In fact, the correct constitutive relationship for linear elasticity is g = Gg_l.
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Chapter 10

Numerical Solutions to Navier-Stokes
Equations

We nondimensionalize the dimensional incompressible Navier Stokes equations with dimen-
sionless variables

x=Lxr, u=Uu, t=

and define the Reynolds number
pUL

Re = —.
1
The dimensionless incompressible Navier Stokes equations in the domain ) are
! Vu+ f (10.0.1a)
—Vu .0.1a
Re

V-u=0. (10.0.1b)

u;+u-Vu=—-Vp+

We impose the boundary condition
w(x,t) = Uboundary(Z,t) for x € 01,
and the initial condition

u(x,0) = uo(x).

10.1 Projection Methods

These methods are motivated by a decomposition theorem for vector fields:

Theorem 10.1.1 (Hodge Decomposition). Let w(x) be a smooth vector field defined on a
region ). Then w(x) can be written as

w(x) = v(x) + Vo(z),
where v is divergence-free and v -n =0 on 0f).
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Proof. 1f this were true, then ¢ satisfies the Poisson equation with Neumann boundary condi-
tion since

V-w=V-(Vp)=A¢ inQ (10.1.1a)
Vo-n=w-n on 0f) (10.1.1b)

With this in mind, we define ¢(x) to be the solution of (10.1.1). For (10.1.1) to have a solution,
a compatibility condition must hold, which can be found by integrating by parts:

/dem_/Agzﬁde_ v(p.ndsm_/ gdS,.
Q Q o0

o0

By assumption, this compatibility condition holds and (10.1.1) has a unique solution ¢(x) up
to additive constant. By setting v(x) = w(x) — V¢(x), one can show that it satisfies the
required constraint and the theorem is proved. [ |

Remark 10.1.2. Note that the Hodge decomposition is unique. Indeed,
/v-ngde:/V-(gzﬁv)—qbV-vde
Q Q

- [V av.

= ¢pv-ndSy =0,
o9

i.e. v and V¢ are orthogonal in L?*(€2). This also means that given a vector field w, we
have that v = P(w), where P is the linear orthogonal projection operator (onto where?).
CHT:Explain this decomposition better, see Kopachevsky book.

If V-u(x,t) =0forall t > 0, then V- u;(x,t) = 0. Rearranging the (10.0.1), we have that
1
u + Vp = —u~Vu+§Au+f:w, (10.1.2)

and the LHS is a decomposition of some vector field. From above, if V-w = 0, then w = P(w);
if w = V¢, then P(w) = 0. Applying P onto (10.1.2), we obtain

1
ut:P(—u-Vu—f—ﬁAu—i-f).

We discretise time into steps of size At. Let ¢, = nAt. Then

’LLn+1 —u" 1 1 1 1
—F A"z = —Vp't: 4 T (Vu"t' + Vu') + (10.1.3)

V-u"t =0, (10.1.4)

1
where f"+% is the vector f evaluated at (n + 5) At and A"3 is some second-order in time

1
approximation to u - Vu at (n + 5) At.



Chapter 11

Continuum Theory of Polymeric Fluids
at Equilibrium

[morozov2015introduction]

11.1 Mechanical Models for Polymer Molecules

We consider flexible polymers. They can take up on enormous number of configurations from
the rotation of chemical bond.

11.1.1 Freely jointed bead-rod chain model

Consider a freely jointed chain of (N + 1) beads with position vectors {Ry,..., Ry} and
N bonds or links R; = R; — R;_1,i = 1,2,..., N with bond length by. Let )(R) be the
distribution function of a random vector of length by, in the sense that the polar angles for the
vector in the chain are completely random. Denote the following:

{Rn} — (Ro,...,RN]R), {Rn} - (Rl,RQ,...,R).

Since each bond is assumed to be oriented independently of all other bonds, the equilibrium
polymer conformation/configuration distribution function for the entire chain is simply the
product of the single bond distribution functions:

N

n=1

We have .

 47h?

i.e. ¥(R) is a probability density function.
Let R be the end-to-end displacement vector defined by

Y(R) d(|R| — boR), such that Y(R)dR =1,
R3

N N
R:RN—RO:ZRn—Rn_1:ZRn.

n=1 n=1
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Then
(R)=> (R,)=0

N N

(R =(R-R) = <Z R, - ZRmR> =Y (R, -Ry)=) (R)*+2 ) (R, -R,) =) (R,)’

n,m=1 n=1 n,m=1 n=1

n>m
We use spherical coordinate to compute (R?):

1

2\ - _
®) = [ IRPUR)AR = o [ RS (] - ) aR

1 2T T fo%e)
= 42 / / / Rrp*3 (Rrp — boR) Rrp? sin 6 dRp df d¢
™05 Jo o Jo

1 o0

= ?/ Rrp*6 (Rrp — boR) dRrp
0 Jo

_ by _

==t

Hence, (R?) = Nb2 and the root mean square of the end-to-end displacement vector is

R:\/uT?):\/NbO.

Remark 11.1.1. The fact that (R*) ~ N holds for general model, e.g. freely rotating chain,
in the limit that N is large. In general we have (R*) = Nb?, where b is the effective bond
length, which can be computed from the stiffness co, = b*/b3. For example,

1+ cost

R?) = Nb? R for large N.
O\ 1—cosé

CHT:Il don't know what is the b; term on your note.

11.1.2 Distribution of the end-to-end displacement vector

Let ¢(R, N) be the probability distribution function that the end-to-end displacement vector
of the chain consisting of NV links of length b is R. The probability of such event is given by

o)~ [om, [ iR [ iR (R_ iRnR> w((m.))

Recall the Fourier transform and inverse Fourier transform:

fk)=[ flx)e ™" da
RS

1 A )
ok /R ) f(k)e™* dk.

flx) =
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123
One can show that .
S(k) — _ iRk
ik)=1 = 6(R) = OE /Rse dk.
Consequently,
N
O(R dk exp ( : (R - ZRnR> R) m({m})
n=1
N
dRy- - dk exp (ik - RR) exp (—zkz ZR R) W({Rn}>
n=1
dk exp (ik - RR) /de/dRQ /dRNHeXp —ik - R,R)Y(R,)

n=1

_ (%) / dk exp (ik - RR) [ / dRexp(—z’krRR)w(R)R}N.

Substituting the bond distribution function ¢ (R) gives

: 1 :
/R3 exp (—ik - RR)Y(R)dR = = /R3 exp (—ik - RR) ¢ (|R| — bR) dR

1 .
= e /R3 exp (—i|k||R| cosR) § (|[R| — bR) dR,

where 6 is the angle between R and k. Because the integrand is invariant under rotations, we

can employ a modified spherical coordinates (Rp, ¢, 6) such that € is the angle between R and
the z-axis. Denote k = |k|, this results in

1 .
Ah2 /1;3 eXp <_Z’k||R| COSQR)5(|R| —bR) dR

2m (o]
= 5 / / / exp (—ikRpcosOR) 6 (Rp — b)Rp* sin dRp df d¢
2 [T, , )
= —> b* exp (—ikb cos OR) sin 6 df
4rb? J,

I
— _/ e—zk:bu du
2/,

1 1
2ikb
1
577, (
_ sin(kb)
kb

—ikbu

-1

efzkb o ezkbR)

where we make a change of variable u = cos#.
For kb <« 1,

(kb)*

sin(kb) ~ kb — -



124 11.1. Mechanical Models for Polymer Molecules

sin(kb) k2b?

~1l——

kb 6

kb 6 6N

Hence, for sufficiently small kb and sufficiently large IV,

Sln(kb)R N ~ 6_k2b2N/6
kb '

CHT:Note that the absolute max of sin(kb)/kb is at k = 0 and one can use asymptotic expansion of

integrals to prove it? Thus we have

w

O(R,N) = — / e B RUNIG kg
(27T) R3

1 . 12 2 2 2
oi(ka Ratky Ry +k:R:R) ,—b N(k2+k2+k2R) /6 dk, dk, dk,

(27)?

_ 21 - H/ eikaRae—b2Nka/6dka
)

6m 9
3H\/ vz (g tiR)

_ 2
(47r2)3/2 <Nb2R) eXp( 2Nb2‘R’ )

3 372 3|R|?
- (27rNb2R) eXp( 2N192R)’

3

oom\

i.e. ®(R,N) is Gaussian. Note that this approximation is bad if |R|? is larger than Nb, the

maximum extended length of the chain. This is true in general as long as

v ({RH}R) = H ¢ (an Rn-i-lv s 7Rn+ncR> )

by Central Limit Theorem.

11.1.3 Gaussian chain

Consider a chain whose bond length is Gaussian distributed as follows:

3 =) SIRP LY in (R — 12
Y(R) = (27rb2R) exp( e ) . with (R*) =0b".

The configuration distribution distribution function is given by

: N 272 272 N
(Sm(kb)R) (1 - ﬂR) (1 R NR) s e FENS s N oo,

3/2 9 3N/2 N
SIR.2.\ [ 3 3|R, — R, \R|
V(R IR) = H <2 iz ) P (_ 202 R) - <27rb2R> P <_Z 202

n=1

3



Continuum Theory of Polymeric Fluids at Equilibrium 125

Instead of viewing the beads joining by rigid bonds with Gaussian distributed length, we
represent this with a mechanical model where the beads are now connected by harmonic springs
with potential energy

H N
UO ({Rn}> = E Z ‘Rn - RnflIR‘2 )
n=1

where H is the spring constant. In the case of Gaussian distribution, the spring constant has
a simple expression

where 7' is the temperature at equilibrium and kg is the Boltzmann constant. Note that at
equilibrium the Maxwell-Boltzmann distribution is exactly V({R,}).
A similar calculation in Section 5.2 leads to the following:

3 3/2 3R, — R.,|?
o (R, — —mR)=[—> R B e 1 I
(Rn = B, —mR) (27rb2|n —m ) P ( 2|n — m|b? ) ’

which implies that (|R, — R,,|?) = |n — m|b?. Later on, we are going to continuous variable,

R
ie. R, — R,y — ——; this leads to the Wiener distribution

OR
3 [N ?
U (R,R) = Cexp (—@/0 dRR) .

Remark 11.1.2. If the springs are taken to be Hookean springs, then the freely jointed bead-
spring chain is called a Rouse-Zimm chain. It contains three parameters: the number of
beads N, the Hookean spring constant H and the Stokes’ drag coefficient &.

OR,
OR

R

11.1.4 Dumbbell models

0
The special case of N = 2 is referred to as the dumbbell models. The spring force is F¢ = R c,
where ¢° is the spring potential energy.

1
1. Hookean (linear): ¢¢ = §H |R|?>. Hookean springs are infinitely stretchable.

1
2. Fraenkel: ¢° = 3 (|R| — |Ro|R)?, where |Ry| is the preferred rest length. We recover
Hookean springs when |rg] — 0 and a rigid rod of length |Ry| when H — 0.

1
3. Tanner (linear-locked): ¢° = §H |R|? if |R| < |Ry|. These springs can stretch only
as far as |R| = |Ry|.

1 R_|
4. Warner (FENE): ¢¢ = —§H|R0\21n (1 - ‘ER R) if |R| < |Rp|. These “finite
0

extendable nonlinear elastic” (FENE) springs have an upper limiting length of | R| = |Ry|.
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11.2 Elastic Dumbbell Models

In this section we study the elastic dumbbell model. In equilibrium systems one can write
down a formal expression for the configurational distribution function directly by means of
equilibrium statistical mechanics. For nonequilibrium systems the configurational distribu-
tion function satisfies a second-order PDE and this can be solved analytically only for simple
macromolecular models. We also derive an expression for the stress tensor.

11.2.1 Modeling assumptions

We treat the polymer molecule as an elastic dumbbell, that is we have two beads of mass m,
labelled @ and @, connected by a spring. Their spatial locations are denoted by R; and Rj.
It is sometimes convenient to work with the “connector vector” Q = R, — R; and the center
of mass R. = (R; + Ry)/2. Q describes the overall orientation and the internal configuration
of the polymer molecule. Most kinetic theories have the following assumptions:

1. The flow field of the polymer solution is homogeneous, in the sense that the rate of strain
tensor E is the same everywhere in the flow field. Therefore the mass-average velocity
field v is linear, i.e.

v=vy+K R, (11.2.1)

for some vy independent of R. Because of the incompressibility condition, x is a traceless
tensor.

2. The phase space distribution function f (R1, Ry, py, Py, t) is replaced by the corresponding
distribution function F(Ry, Ry, Ry, R»,t) in the position-velocity space, such that

F(Ry,Ry, Ry, Ry,t) = U(Ry, Ry, t)=(Ry, Ry, Ry, Ry, 1), (11.2.2)
where

U(R;, Ry, t) = configuration-space distribution function

Z(Ry, Ry, Ry, Ry, t) = velocity-space distribution function.

We impose the normalization condition

//EdedRQ:L

3. The configuration-space distribution function ¥ can be factored as

\P(RlaRQat) = mﬁ(Q,t% /w(Qat) dQ = 1a (1123)

where n is the number of polymer molecules per unit volume. This indicates that the
configuration distribution is independent of the location of the dumbbells in space (or
the center of mass).
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4. The velocity-space distribution function = is Maxwellian about the mass-average solution
velocity v at the center of mass of the dumbbell, that is

1
exp (—ﬁ{ m|Ry — v|? + m|R2—v|2R} )

// exp (—— {—m|R1 — >+ —m\Rz - v|2R] ]R) dR; dR,
R2 2 2

(11.2.4)
In other words, the velocity distribution is the same as that in a solution at equilibrium.

This is sometimes called the assumption of “equilibration in momentum space”.

—'eq Rl ) R2

Before we explain the four kinds of forces experienced by each bead, we introduce the
following two notations. Given any time-independent function B(R;, Ry, Ry, Ry), its velocity-
space average is given by

[B] = / B(Ri, Ry, R,, R;)=dR, dR;, (11.2.5)
and this average is a function of Ry, R, and t; its phase space average is given by
1
(B) = — //[[B]](Rl, R,, )V dR; dR,, V = volume of the solution, (11.2.6)

and this average is a function of ¢ only.
(a) External force F. Examples are gravitational and electrical forces.

(b) Intramolecular force F¢. This is the force on one bead resulting from the spring in the

dumbbell, given by

0
o __7

where ¢ is the spring potential energy.

(¢) Hydrodynamic drag force F". This is the drag force experienced by a bead as it
moves through the solution. Similar to Stokes’ law, the drag force is proportional to the
difference between the bead velocity (appropriately averaged with respect to the velocity
distribution) and the mass-average velocity of the solution. More precisely,

Fl = ¢ ([R] - (v, +v})), (11.2.8)

where v, = vo+£- R, is the imposed homogeneous flow field at bead v, v}, the perturbation
of the flow field at bead v due to the motion of the other bead and ¢ is a symmetric second-

order tensor, called the drag tensor. Note that evaluating HRV]] usi_ng the Maxwell velocity
distribution (11.2.4) would give the fluid velocity v.

(d) Brownian force F. This is due to the thermal fluctuations in the liquid. Because the
true Brownian motion force is rapidly and irregularly fluctuating, we use a statistically
averaged force instead. More precisely, it takes the form

1 0

F) = 3R <[[m (R, — vR) (R, — UR)]]\p>.
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Note that this is the divergence of a momentum flux with respect to the fluid velocity v
at the center of mass of the dumbbell. Almost all kinetic theories assume equilibration in
momentum space (11.2.4), in this case the Brownian force assumes a much simpler form:

0
R,

Fb = kT InVv, (11.2.9)

and we will use the above expression for F® unless stated otherwise.

In addition to the previous four assumptions about the configuration-space and velocity-space
distribution functions, we also impose four assumptions about these forces:

1. Inertia of the beads is negligible, i.e. the motion of each bead is dominated by drag and
viscous effect of the solution. FIt follows from Newton’s second law that

F'+ F' + F® + F¢ = 0. (11.2.10)

2. The external forces F*, are independent of R..

3. The hydrodynamic interaction, i.e. hydrodynamic forces due to the motion of the other
bead, is negligible. This means that v/, ~ 0.

4. The friction tensor ¢ is assumed to be isotropic, i.e. £ = {1, £ being the drag coefficient.

This together with the previous assumption simplifies the hydrodynamic force to
Fh = —g([[Ry]] —fuy> (11.2.11)

11.2.2 Equation of motion for the beads

We may now derive the PDE for the configurational-space distribution function. Substitut-
ing(11.2.1), (11.2.11), (11.2.9) and (11.2.3) into (11.2.10) we obtain the equation of motion for
the two beads:

—f([[Ry]]—’vg—g-Ry) —kTa;?2 Ine+ F+ FC =0, v=12 (11.2.12)

(4

For the dumbbell models the intramolecular forces on the two beads are equal and opposite, so
we define a connector force F¢ by F¢ = F¢ = —F}. Adding (11.2.12) and recalling the center
of mass R, = (R; + Ry)/2, we obtain the equation of motion for R.:

0
R,

—5([[121]] + [Ro] — 2v0 — & - (R +R2)> - kT( o + o mwx&a) +FS+ F5=0

0 b+ 0
R, OR;

—%(ﬂRC]] — 20y — 2% - Rc) kT < w&) + F¢ + F5 = 0.

Since chain rule gives

)
———1Inv if v=1,

0 _(9Q R\ (9 _] e

8Ruln¢_(aRyR) (6‘62111%)_ Oy ifw=2
0Q ’
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the equation of motion for R, reduces to

> 1 e e
[R.] :v0+g.Rc+i<Fl+F2>. (11.2.13)

On the other hand, subtracting (11.2.12) yields

9 9
R, "V T IR,

—g([[Rg]] —[Ri] - £ (R —R1)> - k:T( 1n¢R> +F)—F{+F;—F{=0

—S(HQ]] —Q'Q> — 2kT (%hmm&) —2F°+ F— FS=0.

Rearranging gives the equation of motion for the connector vector Q:

[Q] Zg-Q—%TT (%mw[@) _ %FC+%<F§—F§>. (11.2.14)

11.2.3 Equation of continuity for ¥(Q,1t)

Viewing R, Rs as a single point in a six-dimensional configuration space, one can show that
0,0 = — (ale : ([[Rﬂ]m) R) - (aiRQ : ([[RQ]]\IJR) R)
_ (afzc : ([[RC]]@R) R) - (% : ([[Q]]m) R)
— (g [Q19R).
The first term vanishes since from (11.2.3) and (11.2.13) we have

afzc : ([[RC]]\IJR) = [R]- (2 ;;’CR) + T afzc [R.]
= [R.] -0+ Wtr (kR)
=0,

where we use the assumption that ¢ is independent of R, and k is traceless. Finally, substi-
tuting (11.2.14) for [Q] we obtain the diffusion equation for ¥(Q,t):

. 2kT [ Oy 2 . I e
By = 50 <[§.Q}¢_ - (%R) - gF ¢+E[F2 —Fl]z/z]R) . (11.2.15)

Remark 11.2.1. We can multiply (11.2.15) by any function B(Q) and integrate over all the
configuration space as in (11.2.6). This gives the evolution equation for the phase space average

(B) of B:
d OB 2kT / 0 OB
70 =5 (@5g%) + 7 (75 5g®)

2/ 9B\ 1/r.. .1 OB
- ao%) e (- mi] - gm)
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11.3 Expressions for the Stress Tensor

The total stress tensor ¢ in a polymer solution is presumed to be the sum of a contribution
from the solvent, g, and the presence of polymer molecules, g

IS
I

g +ao
=p

=s

= (—pséﬂs) + (pp£+;p)

=-PL+T,

where p = ps —pp, T = .+ T, and T, = 2nsE, ns being the solvent viscosity. Kramers showed
that there are 3 main contributions to g
c =n°+1°+1°,

=p =p =p

—Pp

where

E; = tension or compression force transmitted along

the connector due to straddling of dumbbells
g}i = effects due to external forces acting on the dumbbells

straddling the plane in the solution

gz = stress due to the bead motion across the plane.

11.3.1 Contribution from the intramolecular potential

Consider an arbitrary plane of area S in the solution moving with local velocity v. The
orientation of the plane is given by a unit normal vector n. How many dumbbells with connector
vector @ will be straddling the plane, with bead @ on the (=) side and bead @ on the @
side? Let

n = the number of dumbbells per unit volume V'

n - QS = the volume in which bead @ must be
»(Q,t) dQ = probability that the dumbbell is in the configuration range d@Q about Q.

There will be a contribution to the force of the negative material on the positive material
in the amount of —Ff, so the stress contribution of dumbbells of all orientation with bead @

on the negative side and bead @ on the positive side is

1

_ ‘ e
S/quchthat n-Q>0n(n QR) S( F1)¢(Q,t) dQ

Similarly, the stress contribution of the dumbbells of all orientations with bead @ on the
negative side and bead @ on the positive side is

1 o .
S/quchthatn.Q<0n( n QR)S( FQ)w(Q,t)dQ
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Hence the total contribution to the stress of the negative material on the positive material is

- / n(n- QR) Fh(Q.t)dQ - / n(n - QR) F(Q.1) dQ
n-Q>0 n-Q<0

:iémewF%@ﬁﬂQ

__ ['n, . n/QFw(Q,t) dQR}
—-n- (n(QF?)),

but this equals to n - g;, the traction from the fluid acting on the surface with unit normal
vector n. Hence,
m = —n(QF°).
Since the force F° is directed along the connector vector @, we can rewrite it as F° =
|F°|Q/|Q)|, where |F°| is the magnitude of F*°. Consequently, g; is a symmetric tensor. This

also suggests that we need to compute (QQ), the phase space average of the second-order
tensor QQ. One can use the diffusion equation (11.2.15) for (@, t) to obtain the evolution
equation for (QQ):

4kT

$1QQ) - 5-(@Q) - Q@) 5" = “ L {(QF)
HH(F - FRIQ4Q(F - FRIQ).  (1131)
The second-order tensor
QQ) = £1QQ) ~ £ (QQ) - (QQ) " (132)

is known as the upper convective derivative.

11.3.2 Contribution from the external forces

Similar to the derivation of 2;, the stress contribution of the negative material on the positive
material is
/ n(n - QR) (—F5)e(Q, 1) dQ + / n(-n-QR) (~F5)u(Q1dQ.  (11.33)
n-Q>0 n-Q<0
On the other hand, the stress contribution of the positive material on the negative material is

[ nn QR EFYUQOIQ+ [ n(-n QR (FONQOQ (1134
n-Q>0 n-Q<0

and this must be the negative of (11.3.3). Hence, substracting (11.3.4) from (11.3.3) and
halving the resulting expression we obtain

n- (%H(Q (FS — FCR)ﬂR{) =n-I,

which in turn gives

1
¢ = Sn(Q(F; — FiR)).

s

Note that this contribution is not necessarily symmetric.
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11.3.3 Contribution from the bead motion

The motion of the beads across an arbitrary plane will contribute to the stress tensor because
of the momentum transported by the beads. How many @ beads with velocity R, will cross
an arbitrary surface in time At? This is given by

n [ <R1 —'UR) -Sn}At.
wohvme ’

The amount of momentum transported is then
n[ (R1 — vR) . Sn]m <R1 — 'U]R) At,
and the average value of the momentum flux (momentum per unit time per unit area) resulting

from beads @ is
- /ﬂm (B~ oR) (B —vR)](Q.1) Q. (11.3.5)

A similar expression holds for the average value of the momentum flux resulting from beads
@. Thus the average value of the momentum flux resulting from both beads is obtained by
adding these two contributions, and it must equal to n - gﬁ’). We obtain

= n/ Nim (Ry _ UR) (R,, _ UR) RH $(Q, 1) dQ.

v=1

For a Maxwellian velocity distribution,
gz = 2nkTI,

and this contribution has no rheological impact since it is isotropic.

11.3.4 Summary

Finally, the total stress tensor of a dilute solution of dumbbells with the Maxwellian velocity
distribution is

I
Q
|
=
Q
E!
+
=
Q
%
I
=
=
+
)
3
w
~
|1~

v=1
. . . o 0P
where R, = R,— R, is the location of the beads relative to the center of mass and F{, = — R
In a system at equilibrium, that is £ = 0 and F';, = 0, from (11.3.1) we obtain ’
4kT 4
0="1-(QF)

£ = ¢
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(QF°) = kTI,
and so

—pl = —p L —n(QF°) +2nkTL
= —psL —nkTI+2nkTL

= —psl +nkT1I,

i.e. pp = nkT. Consequently,

—p

T,=0,~Dpl= —n(QF°) + %n(Q (F5 — FiR)) 4+ 2nkTI — nkTL
1
= —n(QF°) + §n<Q (F5 — F{R)) 4+ nkTL

Recall the stress tensor 7 = 7+ T For a Newtonian solvent, 7 = 2n,£ and we obtain
the Kramers stress tensor:

T =2 —n(QF°) + %n(Q (F5 — F{R)) +nkTI (11.3.6)

The modified Kramers stress tensor takes the alternate form:
r=2,E+nY (R, (F)+FR))+nkTL. (11.3.7)

Because the sum of forces equals 0, from (11.2.10) we have
F® 4+ F¢=-F' - F°.

Substituting the Brownian force (11.2.9) and integrating by parts then gives

2
r=2,E+n) (R, (F)+ FR))+nkTL

v=1

=2,E+nY (R, (~F— F'R))+nkTI

2
= 27752 -n Z(RvFg%

v=1

called the Kramers-Kirkwood stress tensor.

11.4 Hookean Dumbbells

We investigate the specific case of a Hookean spring connector for which F© = HQ, H the
spring constant. This is known as the Oldroyd-B model. For this model the polymer
contribution to the stress tensor T takes the form:

L= —nH(QQ) + nkTL (Kramers)
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ng, v .

T, = Z<QQ> (Giesekus)

We can eliminate (QQ) from these two equations. Let Ay = £/4H be the time constant for
the Hookean dumbbells.

T —nkTI=-nH{(QQ)

—Pp

v v v 4H
T, - nkT1 = -nH(QQ) = —Tgp.
Since
v d
I=—I—-k-1-1 kK"
=-—r—K
= _—Vov— Vol
—2E,
we obtain
4H
T+l — _onkTE
=p é’ =p f—

AT 47 = —2nkTAE.
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